Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Neurosci Lett ; 790: 136890, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36181963

RESUMO

Neuropathic pain is a serious health problem, but optimal drug treatments remain lacking. It has been known that the compound NS5806 is a Kv4.3 activator, which increases Kv4.3-mediated K+ current to reduce neuronal excitability. In this study, we investigated the molecular and cellular mechanisms underlying the analgesic effect of NS5806 in neuropathic pain induced by peripheral nerve injury. Using lumbar (L)5/L6 spinal nerve ligation (SNL) in rats, we found that, without changing the basal nociception, the analgesic effect of NS5806 (220 µg/kg) peaked at 4 h and lasted for 8 h after intraperitoneal injection. Multiple doses of NS5806 reduced not only SNL-upregulated proinflammatory mediators in the DRG and spinal cord on day 1 and day 4 after L5/L6 SNL, but also SNL-evoked expansion of DRG macrophages and spinal microglia on day 4. Furthermore, at 10 min after L5 SNL, NS5806 pretreatment for 4 h suppressed SNL-induced phosphorylated extracellular signal-regulated kinase (pERK) in both Kv4.3+ and Kv4.3- neurons in the dorsal root ganglion (DRG) and superficial spinal dorsal horn, indicating that the action of NS5806 is not restricted to Kv4.3+ neurons. In vitro kinase activity assays revealed that NS5806 weakly inhibited ERK2, MEK1, MEK2, and c-Raf in the ERK pathway. Since NS5806 and the ERK pathway inhibitors have similar antinociceptive characteristics, this study suggests that NS5806 also acts as an ERK pathway inhibitor to attenuate neuropathic pain.


Assuntos
Neuralgia , Traumatismos dos Nervos Periféricos , Ratos , Animais , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Traumatismos dos Nervos Periféricos/complicações , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Ratos Sprague-Dawley , Nervos Espinhais/lesões , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Gânglios Espinais/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Ligadura , Analgésicos/farmacologia , Analgésicos/uso terapêutico
2.
Eur J Pain ; 26(10): 2238-2256, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36097791

RESUMO

BACKGROUND: Kv4 channels are key components controlling neuronal excitability at membrane potentials below action potential thresholds. It remains elusive whether Kv4.1 participates in pain regulation. METHODS: We raised a Kv4.1 antibody to map Kv4.1+ neurons in the superficial dorsal horn of the spinal cord and dorsal root ganglion (DRG) of rats. Behavioural, biochemical and immunohistochemical methods were used to examine whether the activity of Kv4.1+ neurons or Kv4.1 expression level is altered after peripheral nerve injury. RESULTS: In lamina I of the spinal cord, Kv4.1 immunoreactivity (IR) was detected in neurokinin-1 receptor positive (NK1R)+ projection neurons (the secondary nociceptive neurons) and NK1R+ excitatory interneurons. Kv4.1, KChIP2 and DPP10 were co-expressed in these neurons. Peripheral nerve injury evoked by lumbar spinal nerve ligation (SNL) immediately induced phosphorylated extracellular regulated protein kinase (pERK, an indicator of enhanced neuronal activity) in lamina I Kv4.1+ neurons and lamina II Kv4.2/Kv4.3+ neurons of the spinal cord. Furthermore, Kv4.1 appeared in 59.9% of DRG neurons with variable sizes. Kv4.1 mRNA and protein levels in DRG neurons were gradually decreased after SNL. Following intrathecal injection of Kv4.1 antisense oligodeoxynucleotide (ASO) into naive rats, Kv4.1 protein level was reduced in the DRG, and mechanical but not thermal hypersensitivity was induced. CONCLUSIONS: Kv4.1 appears in the secondary nociceptive neurons, and peripheral nerve injury increases the activity of these neurons. Kv4.1 expression in DRG neurons (including half of the nociceptors) is gradually reduced after peripheral nerve injury, and knockdown of Kv4.1 in DRG neurons induces pain. Thus, Kv4.1 participates in pain regulation. SIGNIFICANCE: Based on the expression of Kv4.1 and Kv4.3 in the nociceptors, Kv4.1 in the secondary nociceptive neurons, Kv4.1 in spinal lamina I excitatory interneurons that regulate the activity of the secondary nociceptive neurons, as well as Kv4.2 and Kv4.3 in spinal lamina II excitatory interneurons that also regulate the activity of the secondary nociceptive neurons, developing Kv4 activators or genetic manipulation to increase Kv4 channel activity in these pain-related Kv4+ neurons will be useful in future pain therapeutics.


Assuntos
Nociceptores , Traumatismos dos Nervos Periféricos , Canais de Potássio Shal , Animais , Nociceptores/metabolismo , Oligodesoxirribonucleotídeos/metabolismo , Dor/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Proteínas Quinases/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores da Neurocinina-1 , Canais de Potássio Shal/metabolismo , Corno Dorsal da Medula Espinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA