Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Ultramicroscopy ; 262: 113982, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38692140

RESUMO

Backscattered electron (BSE) imaging based on scanning electron microscopy (SEM) has been widely used in scientific and industrial disciplines. However, achieving consistent standards and precise quantification in BSE images has proven to be a long-standing challenge. Previous methods incorporating dedicated calibration processes and Monte Carlo simulations have still posed practical limitations for widespread adoption. Here we introduce a bolometer platform that directly measures the absorbed thermal energy of the sample and demonstrates that it can help to analyze the atomic number (Z) of the investigated samples. The technique, named Atomic Number Electron Microscopy (ZEM), employs the conservation of energy as the foundation of standardization and can serve as a nearly ideal BSE detector. Our approach combines the strengths of both BSE and ZEM detectors, simplifying quantitative analysis for samples of various shapes and sizes. The complementary relation between the ZEM and BSE signals also makes the detection of light elements or compounds more accessible than existing microanalysis techniques.

2.
ACS Appl Mater Interfaces ; 16(19): 25194-25209, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38684227

RESUMO

The revolutionary self-healing function for long-term and safe service processes has inspired researchers to implement them in various fields, including in the application of antimicrobial protective coatings. Despite the great advances that have been made in the field of fabricating self-healing and antimicrobial polymers, their poor transparency and the trade-off between the mechanical and self-healing properties limit the utility of the materials as transparent antimicrobial protective coatings for wearable optical and display devices. Considering the compatibility in the blending process, our group proposed a self-healing, self-cross-linkable poly{(n-butyl acrylate)-co-[N-(hydroxymethyl)acrylamide]} copolymer (AP)-based protective coating combined with two types of commercial cationic antimicrobial agents (i.e., dimethyl octadecyl (3-trimethoxysilylpropyl) ammonium chloride (DTSACL) and chlorhexidine gluconate (CHG)), leading to the fabrication of a multifunctional modified compound film of (AP/b%CHG)-grafted-a%DTSACL. The first highlight of this research is that the reactivity of the hydroxyl group in the N-(hydroxymethyl)acrylamide of the copolymer side chains under thermal conditions facilitates the "grafting to" process with the trimethoxysilane groups of DTSACL to form AP-grafted-DTSACL, yielding favorable thermal stability, improvement in hydrophobicity, and enhancement of mechanical strength. Second, we highlight that the addition of CHG can generate covalent and noncovalent interactions in a complex manner between the two biguanide groups of CHG with the AP and DTSACL via a thermal-triggered cross-linking reaction. The noncovalent interactions synergistically serve as diverse dynamic hydrogen bonds, leading to complete healing upon scratches and even showing over 80% self-healing efficiency on full-cut, while covalent bonding can effectively improve elasticity and mechanical strength. The soft nature of CHG also takes part in improving the self-healing of the copolymer. Moreover, it was discovered that the addition of CHG can enhance antimicrobial effectiveness, as demonstrated by the long-term superior antibacterial activity (100%) against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria and the antifouling function on a glass substrate and/or a silica wafer coated by the modified polymer.


Assuntos
Polímeros , Polímeros/química , Polímeros/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Elasticidade , Antibacterianos/química , Antibacterianos/farmacologia , Clorexidina/química , Clorexidina/farmacologia , Clorexidina/análogos & derivados
3.
Macromol Rapid Commun ; : e2400059, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538294

RESUMO

Many crucial components inside electronic devices are made from non-renewable, non-biodegradable, and potentially toxic materials, leading to environmental damage. Finding alternative green dielectric materials is mandatory to align with global sustainable goals. Carboxymethyl cellulose (CMC) is a bio-polymer derived from cellulose and has outstanding properties. Herein, citric acid, dextrin, and CMC based hydrogels are prepared, which are biocompatible and biodegradable and exhibit rubber-like mechanical properties, with Young modulus values of 0.89 MPa. Hence, thin film CMC-based hydrogel is explored as a suitable green high-k dielectric candidate for operation at low voltages, demonstrating a high dielectric constant of up to 78. These fabricated transistors reveal stable high capacitance (2090 nF cm-2) for ≈±3 V operation. Using a polyelectrolyte-type approach and poly-(2-vinyl anthracene) (PVAn) surface modification, this study demonstrates a thin dielectric layer (d ≈30 nm) with a small voltage threshold (Vth ≈-0.8 V), moderate transconductance (gm ≈65 nS), and high ON-OFF ratio (≈105). Furthermore, the dielectric layer exhibits stable performance under bias stress of ± 3.5 V and 100 cycles of switching tests. The modified CMC-based hydrogel demonstrates desirable performance as a green dielectric for low-voltage operation, further highlighting its biocompatibility.

4.
ACS Appl Mater Interfaces ; 15(46): 53755-53764, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37906700

RESUMO

The optimization of field-effect mobility in polymer field-effect transistors (FETs) is a critical parameter for advancing organic electronics. Today, many challenges still persist in understanding the roles of the design and processing of semiconducting polymers toward electronic performance. To address this, a facile approach to solution processing using blends of PDPP-TVT and PTPA-3CN is developed, resulting in a 3.5-fold increase in hole mobility and retained stability in electrical performance over 3 cm2 V-1 s-1 after 20 weeks. The amorphous D-A conjugated structure and strong intramolecular polarity of PTPA-3CN are identified as major contributors to the observed improvements in mobility. Additionally, the composite analysis by X-ray photoelectron spectroscopy (XPS) and the flash differential scanning calorimetry (DSC) technique showed a uniform distribution and was well mixed in binary polymer systems. This mobility enhancement technique has also been successfully applied to other polymer semiconductor systems, offering a new design strategy for blending-type organic transistor systems. This blending methodology holds great promise for the practical applications of OFETs.

5.
Macromol Rapid Commun ; 44(24): e2300382, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37703910

RESUMO

Organic-inorganic hybrid perovskites have garnered significant attention in optoelectronics owing to their outstanding tunable optical characteristics. Controlled growth of perovskite nanocrystals from solutions is key for controlling the emission intensity and photoluminescence lifetime of perovskites. In particular, most studies have focused on controlling the crystallization of perovskite through chemical treatment using chelating ligands or physical treatment via antisolvent diffusion, and there exists a trade-off between the photoluminescence intensity and lifetime of perovskites. Herein, a selective solvent vapor-assisted crystallization with the aid of a functional polymer, which nanoscale perovskite crystals are grown andante from precursor solution, is presented for tuning the crystallization and optical properties of a common halide perovskite, methylammonium lead bromide (MAPbBr3 ). The proposed method here produces perovskite nanocrystals in the range of 200-300 nm. The spin-coated thin film formed from the perovskite solution exhibits strong green photoluminescence with a long lifetime. The effects of the functional group and polymer dosage on the crystallization of MAPbBr3 are systematically investigated, and the crystallization mechanism is explained based on a modified LaMer model. This study provides an advanced solution process for precisely controlling perovskite crystallization to enhance their optical properties for next-generation optoelectronic devices.


Assuntos
Compostos de Cálcio , Gases , Cristalização , Difusão
6.
ACS Appl Mater Interfaces ; 15(28): 34075-34086, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37411032

RESUMO

Membrane gas separation provides a multitude of benefits over alternative separation techniques, especially in terms of energy efficiency and environmental sustainability. While polymeric membranes have been extensively investigated for gas separations, their self-healing capabilities have often been neglected. In this work, we have developed innovative self-healing amphiphilic copolymers by strategically incorporating three functional segments: n-butyl acrylate (BA), N-(hydroxymethyl)acrylamide (NMA), and methacrylic acid (MAA). Utilizing these three functional components, we have synthesized two distinct amphiphilic copolymers, namely, APNMA (PBAx-co-PNMAy) and APMAA (PBAx-co-PMAAy). These copolymers have been meticulously designed for gas separation applications. During the creation of these amphiphilic copolymers, BA and NMA segments were selected due to their vital role in the ease of tuning mechanical and self-healing properties. The functional groups (-OH and -NH) present on the NMA segment interact with CO2 through hydrogen bonding, thereby boosting CO2/N2 separation and achieving superior selectivity. We assessed the self-healing potential of these amphiphilic copolymer membranes using two distinct strategies: conventional and vacuum-assisted self-healing. In the vacuum-assisted approach, a robust vacuum pump generates a suction force, leading to the formation of a cone-like shape in the membrane. This formation allows common fracture sites to adhere and trigger the self-healing process. As a result, APNMA maintains its high gas permeability and CO2/N2 selectivity even after the vacuum-assisted self-healing operation. The ideal CO2/N2 selectivity of the APNMA membrane aligns closely with the commercially available PEBAX-1657 membrane (17.54 vs 20.09). Notably, the gas selectivity of the APNMA membrane can be readily restored after damage, in contrast to the PEBAX-1657 membrane, which loses its selectivity upon damage.

7.
ACS Appl Mater Interfaces ; 15(1): 1675-1684, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36562738

RESUMO

Tremendous research efforts have been dedicated into the field of photoresponsive nonvolatile memory devices owing to their advantages of fast transmitting speed, low latency, and power-saving property that are suitable for replacing current electrical-driven electronics. However, the reported memory devices still rely on the assistance of gate bias to program them, and a real fully photoswitchable transistor memory is still rare. Herein, we report a phototransistor memory device comprising polymer/perovskite quantum dot (QD) hybrid nanocomposites as a photoresponsive floating gate. The perovskite QDs offer an effective discreteness with an excellent photoresponse that are suitable for photogate application. In addition, a series of ultraviolet (UV)-sensitive insulating polymer hosts were designed to investigate the effect of UV light on the memory behavior. We found that a fully photoswitchable memory device was fulfilled by using the independent and sequential photoexcitation between a UV-sensitive polymer host and a visible light-sensitive QD photogates, which produced decent photoresponse, memory switchability, and highly stable memory retention with a memory ratio of 104 over 104 s. This study not only unraveled the mystery in the fully photoswitchable functionality of nonvolatile memory but also enlightened their potential in the next-generation electronics for light-fidelity application.

8.
Front Nutr ; 9: 1062667, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36570123

RESUMO

Introduction: Oxidative stress is involved in numerous inflammatory diseases, including trauma. Micronutrients, such as selenium (Se), which contribute to antioxidant defense, exhibit low plasma levels during critical illness. This study aimed to investigate the impact of early Se supplementation on trauma patients. Materials and methods: A total of 6,891 trauma patients were registered at a single medical center from January 2018 to December 2021. Twenty trauma patients with Se supplemented according to the protocol were included in the study group. Subsequently, 1:5 propensity score matching (PSM) analysis was introduced. These patients received 100 mcg three times a day for 5 days. The primary outcome was overall survival (OS); the secondary outcomes were hospital/intensive care unit (ICU) length of stay (LOS), serologic change, ventilator dependence days, and ventilation profile. Results: The hospital LOS (20.0 ± 10.0 vs. 37.4 ± 42.0 days, p = 0.026) and ICU LOS (6.8 ± 3.6 vs. 13.1 ± 12.6 days, p < 0.006) were significantly shorter in the study group. In terms of serology, improvement in neutrophil, liver function, and C-reactive protein (CRP) level change percentile indicated better outcomes in the study group as well as a better OS rate (100 vs. 83.7%, p = 0.042). Longer ventilator dependence was found to be an independent risk factor for mortality and pulmonary complications in 6,891 trauma patients [odds ratio (OR) = 1.262, 95% confidence interval (CI) = 1.039-1.532, p < 0.019 and OR = 1.178, 95% CI = 1.033-1.344, p = 0.015, respectively]. Conclusion: Early Se supplementation after trauma confers positive results in terms of decreasing overall ICU LOS/hospital LOS and mortality. Organ injury, particularly hepatic insults, and inflammatory status, also recovered better.

9.
ACS Appl Mater Interfaces ; 14(26): 30279-30289, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35737998

RESUMO

Metal halide perovskite nanocrystals (PVSK NCs) are generally unstable upon their transfer from colloidal dispersions to thin film devices. This has been a major obstacle limiting their widespread application. In this study, we proposed a new approach to maintain their exceptional optoelectronic properties during this transfer by dispersing brightly emitting cesium lead halide PVSK NCs in polysaccharide-based maltoheptaose-block-polyisoprene-block-maltoheptaose (MH-b-PI-b-MH) triblock copolymer (BCP) matrices. Instantaneous crystallization of ion precursors with favorable coordination to the sugar (maltoheptaose) domains produced ordered NCs with varied nanostructures of controlled domain size (≈10-20 nm). Confining highly ordered and low dimension PVSK NCs in polysaccharide-based BCPs constituted a powerful tool to control the self-assembly of BCPs and PVSK NCs into predictable structures. Consequently, the hybrid thin films exhibited excellent durability to humidity and stretchability with a relatively high PL intensity and photoluminescence quantum yield (>70%). Furthermore, stretchable phototransistor memory devices were produced and maintained with a good memory ratio of 105 and exhibited a long-term memory retention over 104 s at a high strain of 100%.

10.
Nanomaterials (Basel) ; 12(8)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35458086

RESUMO

With the advancement of portable optoelectronics, organic semiconductors have been attracting attention for their use in the sensing of white and near-infrared light. Ideally, an organic photodiode (OPD) should simultaneously display high responsivity and a high response frequency. In this study we used a ternary blend strategy to prepare PM6: BTP-eC9: PCBM-based OPDs with a broad bandwidth (350-950 nm), ultrahigh responsivity, and a high response frequency. We monitored the dark currents of the OPDs prepared at various PC71BM blend ratios and evaluated their blend film morphologies using optical microscopy, atomic force microscopy, and grazing-incidence wide-angle X-ray scattering. Optimization of the morphology and energy level alignment of the blend films resulted in the OPD prepared with a PM6:BTP-eC9:PC71BM ternary blend weight ratio of 1:1.2:0.5 displaying an extremely low dark current (3.27 × 10-9 A cm-2) under reverse bias at -1 V, with an ultrahigh cut-off frequency (610 kHz, at 530 nm), high responsivity (0.59 A W-1, at -1.5 V), and high detectivity (1.10 × 1013 Jones, under a reverse bias of -1 V at 860 nm). Furthermore, the rise and fall times of this OPD were rapid (114 and 110 ns), respectively.

11.
Nat Commun ; 13(1): 2106, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440650

RESUMO

Quantum dot (QD) light-emitting diodes (LEDs) are emerging as one of the most promising candidates for next-generation displays. However, their intrinsic light outcoupling efficiency remains considerably lower than the organic counterpart, because it is not yet possible to control the transition-dipole-moment (TDM) orientation in QD solids at device level. Here, using the colloidal lead halide perovskite anisotropic nanocrystals (ANCs) as a model system, we report a directed self-assembly approach to form the anisotropic nanocrystal superlattices (ANSLs). Emission polarization in individual ANCs rescales the radiation from horizontal and vertical transition dipoles, effectively resulting in preferentially horizontal TDM orientation. Based on the emissive thin films comprised of ANSLs, we demonstrate an enhanced ratio of horizontal dipole up to 0.75, enhancing the theoretical light outcoupling efficiency of greater than 30%. Our optimized single-junction QD LEDs showed peak external quantum efficiency of up to 24.96%, comparable to state-of-the-art organic LEDs.

12.
J Am Chem Soc ; 144(13): 5864-5870, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35319205

RESUMO

Colloidal metal halide perovskite (MHP) nanocrystals (NCs) are an emerging class of fluorescent quantum dots (QDs) for next-generation optoelectronics. A great hurdle hindering practical applications, however, is their high lead content, where most attempts addressing the challenge in the literature compromised the material's optical performance or colloidal stability. Here, we present a postsynthetic approach that stabilizes the lead-reduced MHP NCs through high-entropy alloying. Upon doping the NCs with multiple elements in considerably high concentrations, the resulting high-entropy perovskite (HEP) NCs remain to possess excellent colloidal stability and narrowband emission, with even higher photoluminescence (PL) quantum yields, ηPL, and shorter fluorescence lifetimes, τPL. The formation of multiple phases containing mixed interstitial and doping phases is suggested by X-ray crystallography. Importantly, the crystalline phases with higher degrees of lattice expansion and lattice contraction can be stabilized upon high-entropy alloying. We show that the lead content can be approximately reduced by up to 55% upon high-entropy alloying. The findings reported here make one big step closer to the commercialization of perovskite NCs.

13.
ACS Appl Mater Interfaces ; 13(50): 60413-60424, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34894653

RESUMO

The alluring properties of a luminescent graphene quantum dot (GQD)-based nanocomposite are unquestionable to realize many advanced applications, such as sweat pH sensors. The well-suited hydrophilic polymers to host GQDs can face an unavoidable swelling behavior, which deteriorates the mechanical stability, whereas the hydrophobic polymers can prevent swelling but at the same time barricade the analyte pathways to GQDs. To resolve the two aforementioned obstacles, we develop a nanocomposite film containing nitrogen-doped GQDs (NGQDs) incorporated into a transparent, elastic, and self-healable polymer matrix, composed of a hydrophobic n-butyl acrylate segment and a hydrophilic N-(hydroxymethyl)acrylamide segment for wearable healthcare pH sensors on the human body. Besides serving as the fluorescence source, NGQDs are also designed as a nano-cross-linker to promote abundant chemical and physical interactions within the nanocomposite network. This synergetic effect gives rise to a 10-fold higher mechanical strength, 7-fold increment in Young's modulus, 4-fold increment in toughness, and 15-fold more sensitivity in pH detection (pH 3-10) compared to those of the pristine copolymer and NGQDs, respectively. Moreover, the mechanically enhanced nanocomposite possesses a high self-healing efficiency (94%) at room temperature even under water and demonstrates a stable sensing performance after repetitive usage for 30 days. Our work provides insights into the simple preparation of human skinlike nanocomposite elastomers usable for wearable pH sensors.

14.
ACS Appl Mater Interfaces ; 13(37): 44656-44662, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34506100

RESUMO

A straightforward mechanism for the photorecovery behavior of photoresponsive nonvolatile organic field-effect transistor (OFET) memories is proposed by employing a commercially available conjugated polymer, the poly(9,9-dioctylfluorene) (PFO), the conjugated monomer fluorene (FO), and the nonconjugated poly(vinyl alcohol) (PVA), as charge storage layers beneath the semiconducting pentacene layer. As photoexcitons are generated upon light exposure, the respective charges recombine with the trapped charges in electrets and neutralize the memory device. However, whether the excitons are generated in the semiconducting layer or the electret part, the origin that mainly governs the photorecovery behavior remains unclear. In this study, we show that when PVA, a nonphotoactive electret, replaces PFO the photorecovery behavior is totally absent, and it confirms the photorecovery behavior dominated by the excitons in situ generated in a charged electret. Moreover, PFO as a photoactive electret, exhibiting an excellent hole-trapping ability over 24 h in the dark and high Ion/Ioff current ratio of 108, has successfully demonstrated rapid photoinduced recovery under UV light. The devices also display a reliable switching ability between electrical charge trapping and optical recovery cycles for optical-recording application. This report presents a clear understanding behind photorecovery phenomena that demonstrates useful guidance to boost the development of photoactive OFET memories based on conjugated polymer electrets.

15.
Macromol Rapid Commun ; 42(19): e2100327, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34288205

RESUMO

Conjugated polymer sorting is currently the best method to select large-diameter single-walled carbon nanotubes (SWCNTs) with tunable narrow chirality in the adaption of highly desired electronics applications. The acceleration on conjugated polymers-SWCNTs interaction with long-term stability through different molecular designs; for example, longer alkyl side-chains or conjugation moieties have been extensively developed in recent years. However, the importance of the macromolecules with abundant van der Waals (VDW) interaction in the conjugated-based block copolymer system acting during SWCNTs sorting is not clearly demonstrated. In this work, a conjugated diblock copolymer involving polyisoprene (PI) and highly dense π-interaction of poly (9,9-dioctylfluorene) (PFO) is utilized to investigate the impact of natural rubber PI physical interaction on sorting effectiveness and stability. Through the rational design of diblock copolymer, PFO with ≈1200 isoprene units can remarkably enhance SWCNTs sorting ability and selected few chiralities with a diameter of ≈0.83-1.1 nm and highly stable solution for more than 1 year. The introduction of long-chain PI system is attributed not only to form weak VDW force with SWCNTs and strengthen the wrapping of PFO around the semiconducting SWCNTs but also to act as a barrier among nanotubes to prevent reaggregation of sorted SWCNTs.


Assuntos
Nanotubos de Carbono , Eletrônica , Polímeros
16.
Adv Sci (Weinh) ; 8(16): e2100742, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34096194

RESUMO

The human visual system enables perceiving, learning, remembering, and recognizing elementary visual information (light, colors, and images), which has inspired the development of biomimicry visual system-based electronic devices. Photosensing and synaptic devices are integrated into these systems to realize elementary information storage and recognition to imitate image processing. However, the severe restrictions of the monotonic light response and complicated circuitry design remain challenges for the development of artificial visual devices. Here, the concept of a smart artificial retina based on an organic optical sensing inverter device that can be operated as a multiwavelength photodetector and recorder is reported first. The device exhibits a light-triggered broadband (red/green/blue) response, a low energy consumption as low as ±5 V, and an ultrafast response speed (<300 ms). Moreover, the multifunctional component is also combined within a single cell for health monitoring of the artificial retina during light surveillance to avoid retinopathy. Proof-of-concept devices, by simplifying the circuitry and providing dual-mode functions, can contribute significantly to the development of bionics design and broaden the horizon for smart artificial retinas in the human visual system.


Assuntos
Materiais Biomiméticos , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Retina/fisiologia , Biônica/métodos
17.
Front Chem ; 8: 766, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33134258

RESUMO

This study developed a simple and efficient strategy to stabilize inorganic halide perovskite CsPbX3 at high relative humidity by embedding it into the matrix with elastic and self-healing features. The polymer matrix has a naturally hydrophobic characteristic of n-butyl acrylate segment (n-BA) and cross-linkable and healable moiety from N-(hydroxymethyl) acrylamide segment (NMA). It was chosen due to the provisions of both a surrounding protective layer for inorganic perovskite and elastic, as well as healing ability to the whole organic-inorganic composite. This fabricated CsPbBr3/PBA-co-PNMA composite was demonstrated to stably persist against the suffering from hydrolysis of perovskites when exposed to a high moisture environment. The PL intensity of the composite after crosslinking was found to be relatively stable after 30 days of exposure to air. Upon water immersion, the PL intensity of composite only showed a decrease of 32% after the first 6 h, then remained stable for 6 h afterward. Furthermore, this fabricated composite was not only flexible and relatively transparent but also exhibited excellent self-healing capability in ambient conditions (T = 25°C), in which the self-healing efficiency after 24 h was above 40%. The tensile strength and stretching ability of 5 wt% perovskite content in the random copolymer were observed to be 3.8 MPa and 553.5% respectively. Overall, flexible and self-healing properties combining with high luminescence characteristics are very promising materials for next-generation soft optical devices.

18.
Adv Mater ; 32(36): e2002638, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32700349

RESUMO

A novel approach for using conjugated rod-coil materials as a floating gate in the fabrication of nonvolatile photonic transistor memory devices, consisting of n-type Sol-PDI and p-type C10-DNTT, is presented. Sol-PDI and C10-DNTT are used as dual functions of charge-trapping (conjugated rod) and tunneling (insulating coil), while n-type BPE-PDI and p-type DNTT are employed as the corresponding transporting layers. By using the same conjugated rod in the memory layer and transporting channel with a self-assembled structure, both n-type and p-type memory devices exhibit a fast response, a high current contrast between "Photo-On" and "Electrical-Off" bistable states over 105 , and an extremely low programing driving force of 0.1 V. The fabricated photon-driven memory devices exhibit a quick response to different wavelengths of light and a broadband light response that highlight their promising potential for light-recorder and synaptic device applications.

19.
ACS Appl Mater Interfaces ; 12(5): 6144-6150, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31918540

RESUMO

The molecular structure of polymer electrets is crucial for creating diverse functionalities of organic field-effect transistor (OFET) devices. Herein, a conceptual framework has been applied in this study to design the highly photoresponsive carbazole-based copolymer electret materials for the application of photoresponsive OFET memory. As an electret layer, two 1,8-carbazole-based copolymers were utilized; the copoly(CT) consisted of carbazole as the donor group and thiophene as the π-spacer, whereas the copoly(CBT) was further introduced as an acceptor moiety, benzothiadiazole, for comparison. Both copolymers exhibited efficient visible-light absorption and photoluminescence quenching in the film state, indicating the formation of a considerable number of nonemissive excitons, one of the crucial factors for achieving photoinduced recovery behavior in OFET memories. Compared to copoly(CT) with the pure donor system, faster and more effective photoinduced recovery behavior was discovered in the copoly(CBT) with the conjugated donor-acceptor structure because of the coexistence of the conjugated donor and acceptor groups. Thus, the dissociation of the generated excitons facilitated the stimulating of the unique ambipolar trapping property, resulting in the high-density data storage devices with multilevel current states. In addition, the nonvolatile and durable characteristics demonstrated the feasibility in application of memory and photorecorders.

20.
Nat Commun ; 11(1): 387, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31959755

RESUMO

Miniaturized photonic sources based on semiconducting two-dimensional (2D) materials offer new technological opportunities beyond the modern III-V platforms. For example, the quantum-confined 2D electronic structure aligns the exciton transition dipole moment parallel to the surface plane, thereby outcoupling more light to air which gives rise to high-efficiency quantum optics and electroluminescent devices. It requires scalable materials and processes to create the decoupled multi-quantum-well superlattices, in which individual 2D material layers are isolated by atomically thin quantum barriers. Here, we report decoupled multi-quantum-well superlattices comprised of the colloidal quantum wells of lead halide perovskites, with unprecedentedly ultrathin quantum barriers that screen interlayer interactions within the range of 6.5 Å. Crystallographic and 2D k-space spectroscopic analysis reveals that the transition dipole moment orientation of bright excitons in the superlattices is predominantly in-plane and independent of stacking layer and quantum barrier thickness, confirming interlayer decoupling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA