Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nat Biomed Eng ; 7(12): 1667-1682, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38049470

RESUMO

Skin microangiopathy has been associated with diabetes. Here we show that skin-microangiopathy phenotypes in humans can be correlated with diabetes stage via morphophysiological cutaneous features extracted from raster-scan optoacoustic mesoscopy (RSOM) images of skin on the leg. We obtained 199 RSOM images from 115 participants (40 healthy and 75 with diabetes), and used machine learning to segment skin layers and microvasculature to identify clinically explainable features pertaining to different depths and scales of detail that provided the highest predictive power. Features in the dermal layer at the scale of detail of 0.1-1 mm (such as the number of junction-to-junction branches) were highly sensitive to diabetes stage. A 'microangiopathy score' compiling the 32 most-relevant features predicted the presence of diabetes with an area under the receiver operating characteristic curve of 0.84. The analysis of morphophysiological cutaneous features via RSOM may allow for the discovery of diabetes biomarkers in the skin and for the monitoring of diabetes status.


Assuntos
Diabetes Mellitus , Técnicas Fotoacústicas , Humanos , Técnicas Fotoacústicas/métodos , Pele/diagnóstico por imagem , Pele/irrigação sanguínea , Aprendizado de Máquina , Fenótipo
2.
Nat Commun ; 14(1): 7888, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38036503

RESUMO

Therapeutic antibodies are widely used to treat severe diseases. Most of them alter immune cells and act within the immunological synapse; an essential cell-to-cell interaction to direct the humoral immune response. Although many antibody designs are generated and evaluated, a high-throughput tool for systematic antibody characterization and prediction of function is lacking. Here, we introduce the first comprehensive open-source framework, scifAI (single-cell imaging flow cytometry AI), for preprocessing, feature engineering, and explainable, predictive machine learning on imaging flow cytometry (IFC) data. Additionally, we generate the largest publicly available IFC dataset of the human immunological synapse containing over 2.8 million images. Using scifAI, we analyze class frequency and morphological changes under different immune stimulation. T cell cytokine production across multiple donors and therapeutic antibodies is quantitatively predicted in vitro, linking morphological features with function and demonstrating the potential to significantly impact antibody design. scifAI is universally applicable to IFC data. Given its modular architecture, it is straightforward to incorporate into existing workflows and analysis pipelines, e.g., for rapid antibody screening and functional characterization.


Assuntos
Comunicação Celular , Sinapses Imunológicas , Humanos , Fluxo de Trabalho , Aprendizado de Máquina
3.
Photoacoustics ; 20: 100203, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33194545

RESUMO

Multispectral Optoacoustic Tomography (MSOT) resolves oxy- (HbO2) and deoxy-hemoglobin (Hb) to perform vascular imaging. MSOT suffers from gradual signal attenuation with depth due to light-tissue interactions: an effect that hinders the precise manual segmentation of vessels. Furthermore, vascular assessment requires functional tests, which last several minutes and result in recording thousands of images. Here, we introduce a deep learning approach with a sparse-UNET (S-UNET) for automatic vascular segmentation in MSOT images to avoid the rigorous and time-consuming manual segmentation. We evaluated the S-UNET on a test-set of 33 images, achieving a median DICE score of 0.88. Apart from high segmentation performance, our method based its decision on two wavelengths with physical meaning for the task-at-hand: 850 nm (peak absorption of oxy-hemoglobin) and 810 nm (isosbestic point of oxy-and deoxy-hemoglobin). Thus, our approach achieves precise data-driven vascular segmentation for automated vascular assessment and may boost MSOT further towards its clinical translation.

4.
Nucleic Acids Res ; 48(20): 11335-11346, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33119742

RESUMO

High-content imaging and single-cell genomics are two of the most prominent high-throughput technologies for studying cellular properties and functions at scale. Recent studies have demonstrated that information in large imaging datasets can be used to estimate gene mutations and to predict the cell-cycle state and the cellular decision making directly from cellular morphology. Thus, high-throughput imaging methodologies, such as imaging flow cytometry can potentially aim beyond simple sorting of cell-populations. We introduce IFC-seq, a machine learning methodology for predicting the expression profile of every cell in an imaging flow cytometry experiment. Since it is to-date unfeasible to observe single-cell gene expression and morphology in flow, we integrate uncoupled imaging data with an independent transcriptomics dataset by leveraging common surface markers. We demonstrate that IFC-seq successfully models gene expression of a moderate number of key gene-markers for two independent imaging flow cytometry datasets: (i) human blood mononuclear cells and (ii) mouse myeloid progenitor cells. In the case of mouse myeloid progenitor cells IFC-seq can predict gene expression directly from brightfield images in a label-free manner, using a convolutional neural network. The proposed method promises to add gene expression information to existing and new imaging flow cytometry datasets, at no additional cost.


Assuntos
Citometria de Fluxo/métodos , Perfilação da Expressão Gênica/métodos , Processamento de Imagem Assistida por Computador/métodos , Aprendizado de Máquina , Análise de Célula Única/métodos , Animais , Biologia Computacional/métodos , Bases de Dados Genéticas , Feminino , Sangue Fetal/metabolismo , Regulação da Expressão Gênica/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Células Progenitoras Mieloides/metabolismo , Redes Neurais de Computação , Transcriptoma
5.
J Extracell Vesicles ; 9(1): 1792683, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32944180

RESUMO

The in vivo detection of dead cells remains a major challenge due to technical hurdles. Here, we present a novel method, where injection of fluorescent milk fat globule-EGF factor 8 protein (MFG-E8) in vivo combined with imaging flow cytometry and deep learning allows the identification of dead cells based on their surface exposure of phosphatidylserine (PS) and other image parameters. A convolutional autoencoder (CAE) was trained on defined pictures and successfully used to identify apoptotic cells in vivo. However, unexpectedly, these analyses also revealed that the great majority of PS+ cells were not apoptotic, but rather live cells associated with PS+ extracellular vesicles (EVs). During acute viral infection apoptotic cells increased slightly, while up to 30% of lymphocytes were decorated with PS+ EVs of antigen-presenting cell (APC) exosomal origin. The combination of recombinant fluorescent MFG-E8 and the CAE-method will greatly facilitate analyses of cell death and EVs in vivo.

6.
Artigo em Inglês | MEDLINE | ID: mdl-27913357

RESUMO

The application of machine learning methods for the identification of candidate genes responsible for phenotypes of interest, such as cancer, is a major challenge in the field of bioinformatics. These lists of genes are often called genomic signatures and their linkage to phenotype associations may form a significant step in discovering the causation between genotypes and phenotypes. Traditional methods that produce genomic signatures from DNA Microarray data tend to extract significantly different lists under relatively small variations of the training data. That instability hinders the validity of research findings and raises skepticism about the reliability of such methods. In this study, a complete framework for the extraction of stable and reliable lists of candidate genes is presented. The proposed methodology enforces stability of results at the validation step and as a result, it is independent of the feature selection and classification methods used. Furthermore, two different statistical tests are performed in order to assess the statistical significance of the observed results. Moreover, the consistency of the signatures extracted by independent executions of the proposed method is also evaluated. The results of this study highlight the importance of stability issues in genomic signatures, beyond their prediction capabilities.


Assuntos
Genômica/métodos , Genômica/normas , Aprendizado de Máquina , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Análise por Conglomerados , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Genoma/genética , Humanos , Reprodutibilidade dos Testes , Máquina de Vetores de Suporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA