Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biofabrication ; 16(4)2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39142325

RESUMO

Hyalocytes, which are considered to originate from the monocyte/macrophage lineage, play active roles in vitreous collagen and hyaluronic acid synthesis. Obtaining a hyalocyte-compatible bioink during the 3D bioprinting of eye models is challenging. In this study, we investigated the suitability of a cartilage-decellularized extracellular matrix (dECM)-based bioink for printing a vitreous body model. Given that achieving a 3D structure and environment identical to those of the vitreous body necessitates good printability and biocompatibility, we examined the mechanical and biological properties of the developed dECM-based bioink. Furthermore, we proposed a 3D bioprinting strategy for volumetric vitreous body fabrication that supports cell viability, transparency, and self-sustainability. The construction of a 3D structure composed of bioink microfibers resulted in improved transparency and hyalocyte-like macrophage activity in volumetric vitreous mimetics, mimicking real vitreous bodies. The results indicate that our 3D structure could serve as a platform for drug testing in disease models and demonstrate that the proposed printing technology, utilizing a dECM-based bioink and volumetric vitreous body, has the potential to facilitate the development of advanced eye models for future studies on floater formation and visual disorders.


Assuntos
Bioimpressão , Matriz Extracelular , Tinta , Impressão Tridimensional , Corpo Vítreo , Corpo Vítreo/metabolismo , Corpo Vítreo/citologia , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Animais , Bioimpressão/métodos , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Humanos , Cartilagem/citologia , Cartilagem/química , Cartilagem/metabolismo , Sobrevivência Celular , Macrófagos/metabolismo , Macrófagos/citologia
2.
Nat Commun ; 15(1): 6553, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095421

RESUMO

Most triblock copolymer-based physical hydrogels form three-dimensional networks through micellar packing, and formation of polymer loops represents a topological defect that diminishes hydrogel elasticity. This effect can be mitigated by maximizing the fraction of elastically effective bridges in the hydrogel network. Herein, we report hydrogels constructed by complexing oppositely charged multiblock copolymers designed with a sequence pattern that maximizes the entropic and enthalpic penalty of micellization. These copolymers self-assemble into branched and bridge-rich network units (netmers), instead of forming sparsely interlinked micelles. We find that the storage modulus of the netmer-based hydrogel is 11.5 times higher than that of the micelle-based hydrogel. Complementary coarse grained molecular dynamics simulations reveal that in the netmer-based hydrogels, the numbers of charge-complexed nodes and mechanically reinforcing bridges increase substantially relative to micelle-based hydrogels.

3.
Adv Mater ; : e2406652, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39051516

RESUMO

A regenerative peripheral nerve interface (RPNI) offers a therapeutic solution for nerve injury through reconstruction of the target muscle. However, implanting a transected peripheral nerve into an autologous skeletal muscle graft in RPNI causes donor-site morbidity, highlighting the need for tissue-engineered skeletal muscle constructs. Here, an engineered regenerative isolated peripheral nerve interface (eRIPEN) is developed using 3D skeletal cell printing combined with direct electrospinning to create a nanofiber membrane envelop for host nerve implantation. In this in vivo study, after over 8 months of RPNI surgery, the eRIPEN exhibits a minimum Feret diameter of 15-20 µm with a cross-sectional area of 100-500 µm2, representing the largest distribution of myofibers. Furthermore, neuromuscular junction formation and muscle contraction with a force of ≈28 N are observed. Notably, the decreased hypersensitivity to mechanical/thermal stimuli and an improved tibial functional index from -77 to -56 are found in the eRIPEN group. The present novel concept of eRIPEN paves the way for the utilization and application of tissue-engineered constructs in RPNI, ultimately realizing neuroprosthesis control through synaptic connections.

4.
Biomaterials ; 307: 122524, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38513435

RESUMO

Patients diagnosed with T1a cancer undergo partial nephrectomy to remove the tumors. In the process of removing the tumors, loss of kidney volume is inevitable, and current surgical methods focus solely on hemostasis and wound closure. Here, we developed an implantable form of decellularized extracellular matrix sponge to target both hemostasis and wound healing at the lesion site. A porous form of kidney decellularized matrix was achieved by fabricating a chemically cross-linked cryogel followed by lyophilization. The prepared kidney decellularized extracellular matrix sponge (kdES) was then characterized for features relevant to a hemostasis as well as a biocompatible and degradable biomaterial. Finally, histological evaluations were made after implantation in rat kidney incision model. Both gelatin sponge and kdES displayed excellent hemocompatibility and biocompatibility. However, after a 4-week observation period, kdES exhibited more favorable wound healing results at the lesion site. This suggests a promising potential for kdES as a supportive material in facilitating wound closure during partial nephrectomy surgery. KdES not only achieved rapid hemostasis for managing renal hemorrhage that is comparable to commercial hemostatic sponges, but also demonstrated superior wound healing outcomes.


Assuntos
Hemostáticos , Neoplasias , Humanos , Ratos , Animais , Matriz Extracelular Descelularizada , Hemostáticos/farmacologia , Hemostáticos/uso terapêutico , Hemostasia , Cicatrização , Rim/lesões
5.
Small ; 20(23): e2308815, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38161254

RESUMO

Non-neural extracellular matrix (ECM) has limited application in humanized physiological neural modeling due to insufficient brain-specificity and safety concerns. Although brain-derived ECM contains enriched neural components, certain essential components are partially lost during the decellularization process, necessitating augmentation. Here, it is demonstrated that the laminin-augmented porcine brain-decellularized ECM (P-BdECM) is xenogeneic factor-depleted as well as favorable for the regulation of human neurons, astrocytes, and microglia. P-BdECM composition is comparable to human BdECM regarding brain-specificity through the matrisome and gene ontology-biological process analysis. As augmenting strategy, laminin 111 supplement promotes neural function by synergic effect with laminin 521 in P-BdECM. Annexin A1(ANXA1) and Peroxiredoxin(PRDX) in P-BdECM stabilized microglial and astrocytic behavior under normal while promoting active neuroinflammation in response to neuropathological factors. Further, supplementation of the brain-specific molecule to non-neural matrix also ameliorated glial cell inflammation as in P-BdECM. In conclusion, P-BdECM-augmentation strategy can be used to recapitulate humanized pathophysiological cerebral environments for neurological study.


Assuntos
Encéfalo , Diferenciação Celular , Matriz Extracelular , Laminina , Humanos , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Laminina/química , Encéfalo/metabolismo , Animais , Neurônios/metabolismo , Doenças Neuroinflamatórias/metabolismo , Suínos , Astrócitos/metabolismo , Microglia/metabolismo , Inflamação/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA