Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Genes Dis ; 11(4): 101079, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38560501

RESUMO

CYP3A5 is a cytochrome P450 (CYP) enzyme that metabolizes drugs and contributes to drug resistance in cancer. However, it remains unclear whether CYP3A5 directly influences cancer progression. In this report, we demonstrate that CYP3A5 regulates glucose metabolism in pancreatic ductal adenocarcinoma. Multi-omics analysis showed that CYP3A5 knockdown results in a decrease in various glucose-related metabolites through its effect on glucose transport. A mechanistic study revealed that CYP3A5 enriches the glucose transporter GLUT1 at the plasma membrane by restricting the translation of TXNIP, a negative regulator of GLUT1. Notably, CYP3A5-generated reactive oxygen species were proved to be responsible for attenuating the AKT-4EBP1-TXNIP signaling pathway. CYP3A5 contributes to cell migration by maintaining high glucose uptake in pancreatic cancer. Taken together, our results, for the first time, reveal a role of CYP3A5 in glucose metabolism in pancreatic ductal adenocarcinoma and identify a novel mechanism that is a potential therapeutic target.

2.
Elife ; 122024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488852

RESUMO

Dysregulated pre-mRNA splicing and metabolism are two hallmarks of MYC-driven cancers. Pharmacological inhibition of both processes has been extensively investigated as potential therapeutic avenues in preclinical and clinical studies. However, how pre-mRNA splicing and metabolism are orchestrated in response to oncogenic stress and therapies is poorly understood. Here, we demonstrate that jumonji domain containing 6, arginine demethylase, and lysine hydroxylase, JMJD6, acts as a hub connecting splicing and metabolism in MYC-driven human neuroblastoma. JMJD6 cooperates with MYC in cellular transformation of murine neural crest cells by physically interacting with RNA binding proteins involved in pre-mRNA splicing and protein homeostasis. Notably, JMJD6 controls the alternative splicing of two isoforms of glutaminase (GLS), namely kidney-type glutaminase (KGA) and glutaminase C (GAC), which are rate-limiting enzymes of glutaminolysis in the central carbon metabolism in neuroblastoma. Further, we show that JMJD6 is correlated with the anti-cancer activity of indisulam, a 'molecular glue' that degrades splicing factor RBM39, which complexes with JMJD6. The indisulam-mediated cancer cell killing is at least partly dependent on the glutamine-related metabolic pathway mediated by JMJD6. Our findings reveal a cancer-promoting metabolic program is associated with alternative pre-mRNA splicing through JMJD6, providing a rationale to target JMJD6 as a therapeutic avenue for treating MYC-driven cancers.


Assuntos
Neuroblastoma , Precursores de RNA , Sulfonamidas , Humanos , Animais , Camundongos , Precursores de RNA/genética , Precursores de RNA/metabolismo , Glutaminase/genética , Reprogramação Metabólica , Histona Desmetilases com o Domínio Jumonji/metabolismo
4.
Iran J Public Health ; 52(10): 2230-2231, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37899913
5.
bioRxiv ; 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37425900

RESUMO

Dysregulated pre-mRNA splicing and metabolism are two hallmarks of MYC-driven cancers. Pharmacological inhibition of both processes has been extensively investigated as potential therapeutic avenues in preclinical and clinical studies. However, how pre-mRNA splicing and metabolism are orchestrated in response to oncogenic stress and therapies is poorly understood. Here, we demonstrate that Jumonji Domain Containing 6, Arginine Demethylase and Lysine Hydroxylase, JMJD6, acts as a hub connecting splicing and metabolism in MYC-driven neuroblastoma. JMJD6 cooperates with MYC in cellular transformation by physically interacting with RNA binding proteins involved in pre-mRNA splicing and protein homeostasis. Notably, JMJD6 controls the alternative splicing of two isoforms of glutaminase (GLS), namely kidney-type glutaminase (KGA) and glutaminase C (GAC), which are rate-limiting enzymes of glutaminolysis in the central carbon metabolism in neuroblastoma. Further, we show that JMJD6 is correlated with the anti-cancer activity of indisulam, a "molecular glue" that degrades splicing factor RBM39, which complexes with JMJD6. The indisulam-mediated cancer cell killing is at least partly dependent on the glutamine-related metabolic pathway mediated by JMJD6. Our findings reveal a cancer-promoting metabolic program is associated with alternative pre-mRNA splicing through JMJD6, providing a rationale to target JMJD6 as a therapeutic avenue for treating MYC-driven cancers.

7.
Nat Commun ; 14(1): 809, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36781850

RESUMO

Rearrangments in Histone-lysine-N-methyltransferase 2A (KMT2Ar) are associated with pediatric, adult and therapy-induced acute leukemias. Infants with KMT2Ar acute lymphoblastic leukemia (ALL) have a poor prognosis with an event-free-survival of 38%. Herein we evaluate 1116 FDA approved compounds in primary KMT2Ar infant ALL specimens and identify a sensitivity to proteasome inhibition. Upon exposure to this class of agents, cells demonstrate a depletion of histone H2B monoubiquitination (H2Bub1) and histone H3 lysine 79 dimethylation (H3K79me2) at KMT2A target genes in addition to a downregulation of the KMT2A gene expression signature, providing evidence that it targets the KMT2A transcriptional complex and alters the epigenome. A cohort of relapsed/refractory KMT2Ar patients treated with this approach on a compassionate basis had an overall response rate of 90%. In conclusion, we report on a high throughput drug screen in primary pediatric leukemia specimens whose results translate into clinically meaningful responses. This innovative treatment approach is now being evaluated in a multi-institutional upfront trial for infants with newly diagnosed ALL.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Complexo de Endopeptidases do Proteassoma , Lactente , Adulto , Humanos , Criança , Complexo de Endopeptidases do Proteassoma/genética , Lisina/genética , Proteína de Leucina Linfoide-Mieloide/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Transcriptoma
8.
Anal Chem ; 94(13): 5325-5334, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35315655

RESUMO

Proteome profiling is a powerful tool in biological and biomedical studies, starting with samples at bulk, single-cell, or single-cell-type levels. Reliable methods for extracting specific cell-type proteomes are in need, especially for the cells (e.g., neurons) that cannot be readily isolated. Here, we present an innovative proximity labeling (PL) strategy for single-cell-type proteomics of mouse brain, in which TurboID (an engineered biotin ligase) is used to label almost all proteins in a specific cell type. This strategy bypasses the requirement of cell isolation and includes five major steps: (i) constructing recombinant adeno-associated viruses (AAVs) to express TurboID driven by cell-type-specific promoters, (ii) delivering the AAV to mouse brains by direct intravenous injection, (iii) enhancing PL labeling by biotin administration, (iv) purifying biotinylated proteins, followed by on-bead protein digestion, and (v) quantitative tandem-mass-tag (TMT) labeling. We first confirmed that TurboID can label a wide range of cellular proteins in human HEK293 cells and optimized the single-cell-type proteomic pipeline. To analyze specific brain cell types, we generated recombinant AAVs to coexpress TurboID and mCherry proteins, driven by neuron- or astrocyte-specific promoters and validated the expected cell expression by coimmunostaining of mCherry and cellular markers. Subsequent biotin purification and TMT analysis identified ∼10,000 unique proteins from a few micrograms of protein samples with excellent reproducibility. Comparative and statistical analyses indicated that these PL proteomes contain cell-type-specific cellular pathways. Although PL was originally developed for studying protein-protein interactions and subcellular proteomes, we extended it to efficiently tag the entire proteomes of specific cell types in the mouse brain using TurboID biotin ligase. This simple, effective in vivo approach should be broadly applicable to single-cell-type proteomics.


Assuntos
Proteoma , Proteômica , Animais , Biotinilação , Encéfalo/metabolismo , Células HEK293 , Humanos , Camundongos , Proteoma/análise , Proteômica/métodos , Reprodutibilidade dos Testes
10.
Nat Aging ; 2(10): 923-940, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36636325

RESUMO

Recent proteome and transcriptome profiling of Alzheimer's disease (AD) brains reveals RNA splicing dysfunction and U1 small nuclear ribonucleoprotein (snRNP) pathology containing U1-70K and its N-terminal 40-KDa fragment (N40K). Here we present a causative role of U1 snRNP dysfunction to neurodegeneration in primary neurons and transgenic mice (N40K-Tg), in which N40K expression exerts a dominant-negative effect to downregulate full-length U1-70K. N40K-Tg recapitulates N40K insolubility, erroneous splicing events, neuronal degeneration and cognitive impairment. Specifically, N40K-Tg shows the reduction of GABAergic synapse components (e.g., the GABA receptor subunit of GABRA2), and concomitant postsynaptic hyperexcitability that is rescued by a GABA receptor agonist. Crossing of N40K-Tg and the 5xFAD amyloidosis model indicates that the RNA splicing defect synergizes with the amyloid cascade to remodel the brain transcriptome and proteome, deregulate synaptic proteins, and accelerate cognitive decline. Thus, our results support the contribution of U1 snRNP-mediated splicing dysfunction to AD pathogenesis.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Animais , Camundongos , Ribonucleoproteína Nuclear Pequena U1/genética , Doença de Alzheimer/genética , Proteoma/genética , Splicing de RNA/genética , Disfunção Cognitiva/genética
12.
J Vis Exp ; (176)2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34747401

RESUMO

With recent advances in mass spectrometry-based proteomics technologies, deep profiling of hundreds of proteomes has become increasingly feasible. However, deriving biological insights from such valuable datasets is challenging. Here we introduce a systems biology-based software JUMPn, and its associated protocol to organize the proteome into protein co-expression clusters across samples and protein-protein interaction (PPI) networks connected by modules (e.g., protein complexes). Using the R/Shiny platform, the JUMPn software streamlines the analysis of co-expression clustering, pathway enrichment, and PPI module detection, with integrated data visualization and a user-friendly interface. The main steps of the protocol include installation of the JUMPn software, the definition of differentially expressed proteins or the (dys)regulated proteome, determination of meaningful co-expression clusters and PPI modules, and result visualization. While the protocol is demonstrated using an isobaric labeling-based proteome profile, JUMPn is generally applicable to a wide range of quantitative datasets (e.g., label-free proteomics). The JUMPn software and protocol thus provide a powerful tool to facilitate biological interpretation in quantitative proteomics.


Assuntos
Proteoma , Proteômica , Análise por Conglomerados , Espectrometria de Massas/métodos , Processamento de Proteína Pós-Traducional , Proteoma/análise , Proteômica/métodos , Software
13.
PLoS One ; 16(10): e0258097, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34644321

RESUMO

The prevalence of metabolic syndrome (MetS) risk factors among the Korean population requires effective health surveillance and examination of the effects of preventative behaviors. Thus, the objective of this study is to evaluate the relationships between the clustering of MetS and MVPA in a large sample of 36,987 Koreans ranging from 20 to 80 years of age. This study recruited a total of 36,987 adults (23,813 males and 13,174 females). All participants were assessed for moderate-to-vigorous physical activity (MVPA) using the Korean version short form of the International Physical Activity Questionnaire (IPAQ). The International Diabetes Federation and the Adult Treatment Panel III criteria for blood pressure, hyperglycemia, low high-density lipoprotein cholesterol (HDL-C), and high triglycerides (TG) defined MetS. Waist circumference (WC) was determined by Asian-Pacific region populations. According to the 150-minute MVPA, there were differences in MetS risk factors in young adult males, and only three factors (WC, HDL-C, and TG) were different males in ≥ 70 years old. In females, there was a difference in MetS risk factors in the elderly, and only three factors (WC, blood pressure, and TG) were different females in ≤ 29 years old. The males who did not met the recommended MVPA had a 1.16 to 3.14 -times increase in the MetS risk factors. The females who did not met the recommended MVPA had a 1.18 to 2.57 -times increase in the MetS risk factors. Our study provides evidence that Korean adults who do not engage in recommended MVPA levels increase the odds ratio for each of the MetS risk factors when compared to those who meet the recommendations.


Assuntos
Exercício Físico , Síndrome Metabólica/epidemiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência , República da Coreia/epidemiologia , Fatores de Risco , Adulto Jovem
14.
Anal Chem ; 93(40): 13495-13504, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34587451

RESUMO

Recent advances in mass spectrometry (MS)-based proteomics allow the measurement of turnover rates of thousands of proteins using dynamic labeling methods, such as pulse stable isotope labeling by amino acids in cell culture (pSILAC). However, when applying the pSILAC strategy to multicellular animals (e.g., mice), the labeling process is significantly delayed by native amino acids recycled from protein degradation in vivo, raising a challenge of defining accurate protein turnover rates. Here, we report JUMPt, a software package using a novel ordinary differential equation (ODE)-based mathematical model to determine reliable rates of protein degradation. The uniqueness of JUMPt is to consider amino acid recycling and fit the kinetics of the labeling amino acid (e.g., Lys) and whole proteome simultaneously to derive half-lives of individual proteins. Multiple settings in the software are designed to enable simple to comprehensive data inputs for precise analysis of half-lives with flexibility. We examined the software by studying the turnover of thousands of proteins in the pSILAC brain and liver tissues. The results were largely consistent with the proteome turnover measurements from previous studies. The long-lived proteins are enriched in the integral membrane, myelin sheath, and mitochondrion in the brain. In summary, the ODE-based JUMPt software is an effective proteomics tool for analyzing large-scale protein turnover, and the software is publicly available on GitHub (https://github.com/JUMPSuite/JUMPt) to the research community.


Assuntos
Proteoma , Proteômica , Animais , Marcação por Isótopo , Espectrometria de Massas , Camundongos , Proteólise , Proteoma/metabolismo
15.
Iran J Public Health ; 49(10): 1894-1901, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33346210

RESUMO

BACKGROUND: The purpose of this study was to find the basic data of medical and exercise therapy by indexing lumbar extension muscle strength of low back pain (LBP) patients. METHODS: In this cross-sectional study, 3078 chronic LBP participants from The J hospital, Seoul, Republic of Korea, from 2003 to 2010 were enrolled. Maximum muscle strength was measured at maximum flexion angle and maximum extension angle according to range of motion (ROM) results. For each isometric test, participants were seated and secured in the MEDX (medx lumbar extension machine, Ocala, FL, USA) machine. RESULTS: The relative ROM (P=0.012) differed significantly among the aged groups in all participants. In addition, mean of strength (P<0.001), maximal of strength (P<0.001), mean of strength %BW (P<0.001) and maximal of strength %BW (P<0.001) are significant differences in all participants. The results of multiple regression analysis was the 'model A', maximal of strength for 32.1% of the variance in weigh, body mass index and range of motion. In addition, 'model B' was 30.4%, 'model C' was 28.8%, 'model D' was 28.5%, 'model E' was 21.7%, and 'model F' was 23.5% of the variance in weigh, body mass index and range of motion. CONCLUSION: We found the three predictor (weight, BMI, and ROM) variables accounted for 32.1% of the variance in maximal of strength %BW, the highest in < 29 yr groups. Our data indicate the basic data of medical and exercise therapy by indexing lumbar extension muscle strength of LBP patients.

16.
J Vis Exp ; (162)2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32894271

RESUMO

Isobaric tandem mass tag (TMT) labeling is widely used in proteomics because of its high multiplexing capacity and deep proteome coverage. Recently, an expanded 16-plex TMT method has been introduced, which further increases the throughput of proteomic studies. In this manuscript, we present an optimized protocol for 16-plex TMT-based deep-proteome profiling, including protein sample preparation, enzymatic digestion, TMT labeling reaction, two-dimensional reverse-phase liquid chromatography (LC/LC) fractionation, tandem mass spectrometry (MS/MS), and computational data processing. The crucial quality control steps and improvements in the process specific for the 16-plex TMT analysis are highlighted. This multiplexed process offers a powerful tool for profiling a variety of complex samples such as cells, tissues, and clinical specimens. More than 10,000 proteins and posttranslational modifications such as phosphorylation, methylation, acetylation, and ubiquitination in highly complex biological samples from up to 16 different samples can be quantified in a single experiment, providing a potent tool for basic and clinical research.


Assuntos
Proteoma/análise , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Cromatografia de Fase Reversa , Biologia Computacional , Proteoma/química , Proteoma/metabolismo
17.
Mol Neurodegener ; 15(1): 43, 2020 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-32711556

RESUMO

BACKGROUND: Based on amyloid cascade and tau hypotheses, protein biomarkers of different Aß and tau species in cerebrospinal fluid (CSF) and blood/plasma/serum have been examined to correlate with brain pathology. Recently, unbiased proteomic profiling of these human samples has been initiated to identify a large number of novel AD biomarker candidates, but it is challenging to define reliable candidates for subsequent large-scale validation. METHODS: We present a comprehensive strategy to identify biomarker candidates of high confidence by integrating multiple proteomes in AD, including cortex, CSF and serum. The proteomes were analyzed by the multiplexed tandem-mass-tag (TMT) method, extensive liquid chromatography (LC) fractionation and high-resolution tandem mass spectrometry (MS/MS) for ultra-deep coverage. A systems biology approach was used to prioritize the most promising AD signature proteins from all proteomic datasets. Finally, candidate biomarkers identified by the MS discovery were validated by the enzyme-linked immunosorbent (ELISA) and TOMAHAQ targeted MS assays. RESULTS: We quantified 13,833, 5941, and 4826 proteins from human cortex, CSF and serum, respectively. Compared to other studies, we analyzed a total of 10 proteomic datasets, covering 17,541 proteins (13,216 genes) in 365 AD, mild cognitive impairment (MCI) and control cases. Our ultra-deep CSF profiling of 20 cases uncovered the majority of previously reported AD biomarker candidates, most of which, however, displayed no statistical significance except SMOC1 and TGFB2. Interestingly, the AD CSF showed evident decrease of a large number of mitochondria proteins that were only detectable in our ultra-deep analysis. Further integration of 4 cortex and 4 CSF cohort proteomes highlighted 6 CSF biomarkers (SMOC1, C1QTNF5, OLFML3, SLIT2, SPON1, and GPNMB) that were consistently identified in at least 2 independent datasets. We also profiled CSF in the 5xFAD mouse model to validate amyloidosis-induced changes, and found consistent mitochondrial decreases (SOD2, PRDX3, ALDH6A1, ETFB, HADHA, and CYB5R3) in both human and mouse samples. In addition, comparison of cortex and serum led to an AD-correlated protein panel of CTHRC1, GFAP and OLFM3. In summary, 37 proteins emerged as potential AD signatures across cortex, CSF and serum, and strikingly, 59% of these were mitochondria proteins, emphasizing mitochondrial dysfunction in AD. Selected biomarker candidates were further validated by ELISA and TOMAHAQ assays. Finally, we prioritized the most promising AD signature proteins including SMOC1, TAU, GFAP, SUCLG2, PRDX3, and NTN1 by integrating all proteomic datasets. CONCLUSIONS: Our results demonstrate that novel AD biomarker candidates are identified and confirmed by proteomic studies of brain tissue and biofluids, providing a rich resource for large-scale biomarker validation for the AD community.


Assuntos
Doença de Alzheimer , Biomarcadores , Córtex Cerebral/metabolismo , Mitocôndrias/metabolismo , Doença de Alzheimer/sangue , Doença de Alzheimer/líquido cefalorraquidiano , Peptídeos beta-Amiloides/metabolismo , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Disfunção Cognitiva/sangue , Disfunção Cognitiva/líquido cefalorraquidiano , Disfunção Cognitiva/metabolismo , Humanos , Fragmentos de Peptídeos/metabolismo , Proteômica/métodos , Proteínas tau/metabolismo
18.
J Sports Med Phys Fitness ; 60(10): 1371-1376, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32608932

RESUMO

BACKGROUND: Although sites and types of injury frequently occurring in fencers have been well described, the type of injury caused by the use of fencing movements is still unknown. This study aimed to provide basic data for injury prevention by understanding the sports injury status in fencers. METHODS: A total of 584 South Korean fencers were included in the survey and were classified according to the injured site, cause of injury, and movement that causes injury. The collected data were analyzed using frequency analysis, χ2 tests, and logistic regression analysis to identify differences in sex, event type, age, and career. RESULTS: Female (P=0.001) and foil fencers (P=0.015) were more likely to experience injury than male and sabre and epee fencers. The incidence of injury was significantly higher according to age (P=0.001) and career (P=0.001). The ankle was the most frequently injured site (17.71%). Injuries most frequently occur during Fente movement (48.11%). Insufficient warm-up was the most common cause of injury (23.91%) in all groups. CONCLUSIONS: These results suggest that a specific warm-up program and strengthening exercises of the ankle and knee ligaments should be established to prevent injuries for fencers. Particularly, female, foil, adult, and experienced fencers should be more careful in preventing injuries.


Assuntos
Traumatismos em Atletas/epidemiologia , Traumatismos em Atletas/prevenção & controle , Adolescente , Adulto , Distribuição por Idade , Traumatismos do Tornozelo/epidemiologia , Traumatismos do Tornozelo/etiologia , Traumatismos do Tornozelo/fisiopatologia , Traumatismos do Tornozelo/prevenção & controle , Traumatismos em Atletas/etiologia , Traumatismos em Atletas/fisiopatologia , Feminino , Humanos , Incidência , Traumatismos do Joelho/epidemiologia , Traumatismos do Joelho/etiologia , Traumatismos do Joelho/fisiopatologia , Traumatismos do Joelho/prevenção & controle , Masculino , Movimento , Prevalência , República da Coreia/epidemiologia , Fatores de Risco , Distribuição por Sexo , Exercício de Aquecimento , Adulto Jovem
20.
Metabolites ; 10(5)2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32408578

RESUMO

Metabolomics is increasingly important for biomedical research, but large-scale metabolite identification in untargeted metabolomics is still challenging. Here, we present Jumbo Mass spectrometry-based Program of Metabolomics (JUMPm) software, a streamlined software tool for identifying potential metabolite formulas and structures in mass spectrometry. During database search, the false discovery rate is evaluated by a target-decoy strategy, where the decoys are produced by breaking the octet rule of chemistry. We illustrated the utility of JUMPm by detecting metabolite formulas and structures from liquid chromatography coupled tandem mass spectrometry (LC-MS/MS) analyses of unlabeled and stable-isotope labeled yeast samples. We also benchmarked the performance of JUMPm by analyzing a mixed sample from a commercially available metabolite library in both hydrophilic and hydrophobic LC-MS/MS. These analyses confirm that metabolite identification can be significantly improved by estimating the element composition in formulas using stable isotope labeling, or by introducing LC retention time during a spectral library search, which are incorporated into JUMPm functions. Finally, we compared the performance of JUMPm and two commonly used programs, Compound Discoverer 3.1 and MZmine 2, with respect to putative metabolite identifications. Our results indicate that JUMPm is an effective tool for metabolite identification of both unlabeled and labeled data in untargeted metabolomics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA