Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Int J Antimicrob Agents ; : 107243, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38908533

RESUMO

Polymicrobial biofilms are among the leading causes of antimicrobial treatment failure. In these biofilms, bacterial and fungal pathogens interact synergistically at the interspecies, intraspecies, and interkingdom levels. Consequently, combating polymicrobial biofilms is substantially more difficult compared to single-species biofilms due to their distinct properties and the resulting potential variation in antimicrobial drug efficiency. In recent years, there has been an increased focus on developing alternative strategies for controlling polymicrobial biofilms formed by bacterial and fungal pathogens. Current approaches for controlling polymicrobial biofilms include monotherapy (using either natural or synthetic compounds), combination treatments, and nanomaterials. Here, a comprehensive review of different types of polymicrobial interactions between pathogenic bacterial species or bacteria and fungi is provided along with a discussion of their relevance. The mechanisms of action of individual compounds, combination treatments, and nanomaterials against polymicrobial biofilms are thoroughly explored. This review provides various future perspectives that can advance the strategies used to control polymicrobial biofilms and their likely modes of action. Since the majority of research on combating polymicrobial biofilms has been conducted in vitro, it would be an essential step in performing in vivo tests to determine the clinical effectiveness of different treatments against polymicrobial biofilms.

2.
Trends Biotechnol ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637243

RESUMO

Microbial infections are major human health issues, and, recently, the mortality rate owing to bacterial and fungal infections has been increasing. In addition to intrinsic and extrinsic antimicrobial resistance mechanisms, biofilm formation is a key adaptive resistance mechanism. Several bioactive compounds from marine organisms have been identified for use in biofilm therapy owing to their structural complexity, biocompatibility, and economic viability. In this review, we discuss recent trends in the application of marine natural compounds, marine-bioinspired nanomaterials, and marine polymer conjugates as possible therapeutic agents for controlling biofilms and virulence factors. We also comprehensively discuss the mechanisms underlying biofilm formation and inhibition of virulence factors by marine-derived materials and propose possible applications of novel and effective antibiofilm and antivirulence agents.

3.
Acta Biomater ; 178: 13-23, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38417645

RESUMO

Microbial pathogens cause persistent infections by forming biofilms and producing numerous virulence factors. Bacterial extracellular vesicles (BEVs) are nanostructures produced by various bacterial species vital for molecular transport. BEVs include various components, including lipids (glycolipids, LPS, and phospholipids), nucleic acids (genomic DNA, plasmids, and short RNA), proteins (membrane proteins, enzymes, and toxins), and quorum-sensing signaling molecules. BEVs play a major role in forming extracellular polymeric substances (EPS) in biofilms by transporting EPS components such as extracellular polysaccharides, proteins, and extracellular DNA. BEVs have been observed to carry various secretory virulence factors. Thus, BEVs play critical roles in cell-to-cell communication, biofilm formation, virulence, disease progression, and resistance to antimicrobial treatment. In contrast, BEVs have been shown to impede early-stage biofilm formation, disseminate mature biofilms, and reduce virulence. This review summarizes the current status in the literature regarding the composition and role of BEVs in microbial infections. Furthermore, the dual functions of BEVs in eliciting and suppressing biofilm formation and virulence in various microbial pathogens are thoroughly discussed. This review is expected to improve our understanding of the use of BEVs in determining the mechanism of biofilm development in pathogenic bacteria and in developing drugs to inhibit biofilm formation by microbial pathogens. STATEMENT OF SIGNIFICANCE: Bacterial extracellular vesicles (BEVs) are nanostructures formed by membrane blebbing and explosive cell lysis. It is essential for transporting lipids, nucleic acids, proteins, and quorum-sensing signaling molecules. BEVs play an important role in the formation of the biofilm's extracellular polymeric substances (EPS) by transporting its components, such as extracellular polysaccharides, proteins, and extracellular DNA. Furthermore, BEVs shield genetic material from nucleases and thermodegradation by packaging it during horizontal gene transfer, contributing to the transmission of bacterial adaptation determinants like antibiotic resistance. Thus, BEVs play a critical role in cell-to-cell communication, biofilm formation, virulence enhancement, disease progression, and drug resistance. In contrast, BEVs have been shown to prevent early-stage biofilm, disperse mature biofilm, and reduce virulence characteristics.


Assuntos
Biofilmes , Ácidos Nucleicos , Humanos , Virulência , Bactérias/metabolismo , Fatores de Virulência/metabolismo , Polissacarídeos , DNA , Progressão da Doença , Lipídeos
4.
Foods ; 13(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38338501

RESUMO

This study aimed to determine enzymes that effectively extract Chlorella pyrenoidosa proteins and optimize the processing conditions using response surface methods. Furthermore, the potential of enzymatically hydrolyzed C. pyrenoidosa protein extract (CPE) as a substitute protein source was investigated. The enzymatic hydrolysis conditions for protein extraction were optimized using single-factor analysis and a response surface methodology-Box-Behnken design. The R2 value of the optimized model was 0.9270, indicating the reliability of the model, and the optimal conditions were as follows: a hydrolysis temperature of 45.56 °C, pH 9.1, and a hydrolysis time of 49.85 min. The amino acid composition of CPE was compared to that of C. pyrenoidosa powder (CP), which was found to have a higher content of essential amino acids (EAA). The electrophoretic profiles of CP and CPE confirmed that CPE has a low molecular weight. Furthermore, CPE showed higher antioxidant activity and phenol content than CP, with ABTS and DPPH radical scavenging abilities of 69.40 ± 1.61% and 19.27 ± 3.16%, respectively. CPE had high EAA content, antioxidant activity, and phenol content, indicating its potential as an alternative protein source. Overall, in this study, we developed an innovative, ecofriendly, and gentle enzymatic hydrolysis strategy for the extraction and refinement of Chlorella proteins.

5.
Int J Biol Macromol ; 255: 128047, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37956810

RESUMO

The design and development of wound dressing with antioxidant and antibacterial properties to accelerate wound healing remain challenging. In this study, we synthesize a chitooligosaccharide-gentisic acid (COS-GSA) conjugate using the free-radical grafting method, and fabricate a poly(vinyl alcohol) (PVA)/chitosan (CH)/COS-GSA (PVA/CH/CG) hydrogel using a freeze-thaw method. We characterize the synthesized COS-GSA conjugates using through polyphenol assay, absorbance, and 1H NMR spectroscopy and evaluate their antioxidant properties. The COS-GSA conjugates are successfully synthesized and exhibit better antioxidant properties than pristine COSs. Subsequently, the fabricated hydrogel is characterized based on its morphological analysis, rheological properties, water contact angle, swelling, degradation, water retention properties, and COS-GSA release profiles. Finally, the biocompatibility of the fabricated hydrogel is evaluated on HDF and HaCaT cells through indirect and direct cytotoxicity. The PVA/CH/CG hydrogel exhibited significantly higher antioxidant properties (DPPH, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and hydrogen peroxide (H2O2) scavenging activities) and antibacterial activities (Staphylococcus aureus and Pseudomonas aeruginosa) compared to other fabricated hydrogels such as PVA, PVA/CH, and PVA/CH/COS (PVA/CH/C). These results provide evidence that PVA/CH/CG hydrogels with antioxidant, antibacterial, and non-cytotoxic properties have great potential for wound-dressing applications.


Assuntos
Quitosana , Quitosana/química , Antioxidantes/farmacologia , Álcool de Polivinil/química , Hidrogéis/química , Peróxido de Hidrogênio , Antibacterianos/farmacologia , Antibacterianos/química , Bandagens , Água , Etanol
6.
RSC Adv ; 13(50): 35583-35591, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38077981

RESUMO

Tirbanibulin, an FDA-approved microtubule-targeting agent (MTA) introduced in 2020, represents a pioneering treatment for precancerous actinic keratosis. Despite its failure to gain approval as an anticancer agent due to insufficient efficacy, there remains potential value in extending its application into malignancy treatment through tirbanibulin-based derivatives. Tirbanibulin possesses a distinctive dual mechanism of action involving microtubule and Src inhibition, distinguishing it from other MTAs. In spite of its unique profile, exploration of tirbanibulin's structure-activity relationship (SAR) and the development of its derivatives are significantly limited in the current literature. This study addresses this gap by synthesizing various tirbanibulin derivatives and exploring their SAR through modifications in the core amide motif and the eastern benzylamine part. Our results underscore the critical role of the pyridinyl acetamide core structure for optimal cellular potency, with favorable tolerance observed for modifications at the para position of the benzylamine moiety. Particularly noteworthy is the analogue modified with p-fluorine benzylamine, which exhibited favorable in vivo PK profiles. These findings provide crucial insights into the potential advancement of tirbanibulin-based compounds as promising anticancer agents.

7.
Int J Antimicrob Agents ; 62(4): 106941, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37536571

RESUMO

Wall teichoic acid (WTA) and lipoteichoic acid (LTA) are structural components of Gram-positive bacteria's peptidoglycan and cell membrane, which are mostly anionic glycopolymers. WTA confers numerous physiological, virulence, and pathogenic features to bacterial pathogens. It controls cell shape, cell division, and the localisation of autolytic enzymes and ion homeostasis. In the context of virulence and pathogenicity, it aids bacterial cell attachment and colonisation and protects against the host defence system and antibiotics. Having such a broad function in pathogenic bacteria's lifecycle, WTA/LTA become one of the potential targets for antibacterial agents to reduce bacterial infection in the host. The number of reports for targeting the WTA/LTA pathway has risen, mostly by focusing on three distinct targets: antivirulence targets, ß-lactam potentiator targets, and essential targets. The current review looked at the role of WTA/LTA in biofilm development and virulence in a range of Gram-positive pathogenic bacteria. Furthermore, alternate strategies, such as the application of natural and synthetic compounds that target the WTA/LTA pathway, have been thoroughly discussed. Moreover, the application of nanomaterials and a combination of drugs have also been discussed as a viable method for targeting the WTA/LTA in numerous Gram-positive bacteria. In addition, a future perspective for controlling bacterial infection by targeting the WTA/LTA is proposed.


Assuntos
Infecções Bacterianas , Lipopolissacarídeos , Humanos , Virulência , Lipopolissacarídeos/metabolismo , Ácidos Teicoicos/metabolismo , Parede Celular/metabolismo , Antibacterianos/metabolismo , Biofilmes , Bactérias Gram-Positivas/metabolismo
8.
ACS Appl Mater Interfaces ; 15(28): 33425-33436, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37341540

RESUMO

Fluorescent nanodiamonds (FNDs) are versatile nanomaterials with promising properties. However, efficient functionalization of FNDs for biomedical applications remains challenging. In this study, we demonstrate mesoporous polydopamine (mPDA) encapsulation of FNDs. The mPDA shell is generated by sequential formation of micelles via self-assembly of Pluronic F127 (F127) with 1,3,5-trimethyl benzene (TMB) and composite micelles via oxidation and self-polymerization of dopamine hydrochloride (DA). The surface of the mPDA shell can be readily functionalized with thiol-terminated methoxy polyethylene glycol (mPEG-SH), hyperbranched polyglycerol (HPG), and d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS). The PEGylated FND@mPDA particles are efficiently taken up by, and employed as a fluorescent imaging probe for, HeLa cells. HPG-functionalized FND@mPDA is conjugated with an amino-terminated oligonucleotide to detect microRNA via hybridization. Finally, the increased surface area of the mPDA shell permits efficient loading of doxorubicin hydrochloride. Further modification with TPGS increases drug delivery efficiency, resulting in high toxicity to cancer cells.


Assuntos
Nanodiamantes , Humanos , Micelas , Células HeLa , Corantes Fluorescentes
9.
Cancers (Basel) ; 15(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36980623

RESUMO

Epigenetic dysregulation characterized by aberrant DNA hypermethylation is a hallmark of cancer, and it can be targeted by hypomethylating agents (HMAs). Recently, we described the superior therapeutic efficacy of a novel HMA, namely, NTX-301, when used as a monotherapy and in combination with venetoclax in the treatment of acute myeloid leukemia. Following a previous study, we further explored the therapeutic properties of NTX-301 based on experimental investigations and integrative data analyses. Comprehensive sensitivity profiling revealed that NTX-301 primarily exerted anticancer effects against blood cancers and exhibited improved potency against a wide range of solid cancers. Subsequent assays showed that the superior efficacy of NTX-301 depended on its strong effects on cell cycle arrest, apoptosis, and differentiation. Due to its superior efficacy, low doses of NTX-301 achieved sufficiently substantial tumor regression in vivo. Multiomics analyses revealed the mechanisms of action (MoAs) of NTX-301 and linked these MoAs to markers of sensitivity to NTX-301 and to the demethylation activity of NTX-301 with high concordance. In conclusion, our findings provide a rationale for currently ongoing clinical trials of NTX-301 and will help guide the development of novel therapeutic options for cancer patients.

10.
ACS Omega ; 8(11): 9873-9888, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36969455

RESUMO

The emergence of antibiotic resistance in microbial pathogens necessitates the development of alternative ways to combat the infections that arise. The current study used nanotechnology as an alternate technique to control virulence characteristics and biofilm development in Pseudomonas aeruginosa and Staphylococcus aureus. Furthermore, based on the acceptance and biocompatibility of the probiotic bacteria, we chose a lactic acid bacteria (LAB) for synthesizing two types of metallic nanoparticles (NPs) in this study. Using molecular techniques, the LAB strain C1 was isolated from Kimchi food samples and identified as Lactiplantibacillus sp. strain C1. The prepared supernatant from strain C1 was used to produce gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs). C1-AuNPs and C1-AgNPs were characterized physiochemically using a variety of instruments. C1-AuNPs and C1-AgNPs had spherical shapes and sizes of 100.54 ± 14.07 nm (AuNPs) and 129.51 ± 12.31 nm (AgNPs), respectively. C1-AuNPs and C1-AgNPs were discovered to have high zeta potentials of -23.29 ± 1.17 and -30.57 ± 0.29 mV, respectively. These nanoparticles have antibacterial properties against several bacterial pathogens. C1-AuNPs and C1-AgNPs significantly inhibited the initial stage biofilm formation and effectively eradicated established mature biofilms of P. aeruginosa and S. aureus. Furthermore, when P. aeruginosa was treated with sub-MIC levels of C1-AuNPs and C1-AgNPs, their different virulence features were significantly reduced. Both NPs greatly inhibited the hemolytic activity of S. aureus. The inhibition of P. aeruginosa and S. aureus biofilms and virulence features by C1-AuNPs and C1-AgNPs can be regarded as viable therapeutic strategies for preventing infections caused by these bacteria.

11.
Mar Drugs ; 21(2)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36827164

RESUMO

The polymicrobial proliferation and development of complex biofilm morphologies by bacterial and fungal pathogens in the host are some of the key factors contributing to the failure of antimicrobial treatments. The polymicrobial interaction of Candida albicans and some bacterial species has been extensively studied in both in vitro and in vivo model systems. Alternative strategies for disrupting polymicrobial interaction and biofilm formation are constantly needed. Among several alternative strategies, the use of nanoparticles synthesized using a natural product in the treatment of microbial infection has been considered a promising approach. The current study aimed to synthesize gold nanoparticles (AuNPs) using a natural product, fucoidan, and to test their efficacy against mono and duo combinations of fungal (Candida albicans) and bacterial (Staphylococcus aureus/Streptococcus mutans) biofilms. Several methods were used to characterize and study Fu-AuNPs, including UV-vis absorption spectroscopy, FTIR, FE-TEM, EDS, DLS, zeta potential, and XRD. The concentration-dependent inhibition of early-stage biofilms and the eradication of mature biofilms of single species of C. albicans, S. aureus, and S. mutans have been observed. Early biofilms of a dual-species combination of C. albicans and S. aureus/S. mutans were also suppressed at an increasing concentration of Fu-AuNPs. Furthermore, Fu-AuNPs significantly eradicated the established mature biofilm of mixed species. The treatment method proposed in this study, which involves the use of marine-bioinspired nanoparticles, is a promising and biocompatible agent for preventing the growth of polymicrobial biofilms of bacterial and fungal pathogens.


Assuntos
Candida albicans , Nanopartículas Metálicas , Ouro , Staphylococcus aureus , Streptococcus mutans/fisiologia , Biofilmes
13.
Ann Coloproctol ; 36(5): 344-348, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32178498

RESUMO

PURPOSE: This study was performed to evaluate the incidence of vasovagal reactions (VVRs) and the efficacy of lidocaine injection for prevention. METHODS: One hundred seventeen patients diagnosed with hemorrhoids and scheduled to undergo a stapled hemorrhoidopexy (SH) were randomly divided according to submucosal injection to the rectum: lidocaine group (n = 53, lidocaine injected just before full closure of the stapler) and control group (n = 58). Outcomes included baseline patient characteristics (American Society of Anesthesiologists physical status classification, body mass index, diabetes mellitus, hypertension, and previous VVR history), vital signs during the operation, incidence of VVRs (hypotension, bradycardia, dizziness, diaphoresis, and nausea/vomiting), and postoperative complications (pain, bleeding, and urinary retention). RESULTS: Baseline characteristics were similar between groups. The number of patients with lower abdominal pain after firing the stapler and incidence of dizziness were lower for the lidocaine group than for the control group (9.4% vs. 25.9%, P = 0.017; 0% vs. 8.6%, P = 0.035, respectively). However, there were no significant between-group differences in incidence of nausea and diaphoresis (0% vs. 3.4%, P = 0.172) and syncope (1.9% vs. 3.4%, P = 0.612). Fewer patients in the lidocaine group complained of postoperative pain (41.5% vs. 58.6%, P = 0.072), and these patients used analgesics less frequently than those in the control group (28.3% vs. 36.2%, P = 0.374). CONCLUSION: Patients who received a submucosal lidocaine injection prior to SH experienced less lower abdominal pain and dizziness compared with those who received standard treatment. A larger, more detailed prospective study is needed for further analysis.

14.
Ann Coloproctol ; 36(3): 204-206, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31958940

RESUMO

Anal gland/duct cyst (AGC) is rare and observed in only 0.05% of patients undergoing anal surgery. AGC is thought to be a retention cyst in the anal gland and arises when an obstruction of the anal duct causes fluid collection in the anal gland. We report a case of AGC in a 66-year-old woman without anal symptoms. Found by colonoscopy, the AGC was excised transanally. The histopathology of the specimen confirmed AGC. Colonoscopists should include AGC in the differential diagnosis of anal canal mass and rule out of malignancy. Excision is recommended for definitive diagnosis and treatment.

15.
J Immunol ; 204(6): 1621-1629, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31996461

RESUMO

Both immature and mature dendritic cells (DCs) can process and present foreign Ags to CD4 T cells; however, the mechanism by which MHC class II (MHC-II) in mature DCs acquires antigenic peptides remains unknown. To address this, we have studied Ag processing and presentation of two distinct CD4 T cell epitopes of the influenza virus hemagglutinin coat protein by both immature and mature mouse DCs. We find that immature DCs almost exclusively use newly synthesized MHC-II targeted to DM+ late endosomes for presentation to influenza virus-specific CD4 T cells. By contrast, mature DCs exclusively use recycling MHC-II that traffics to both early and late endosomes for antigenic peptide binding. Rab11a knockdown partially inhibits recycling of MHC-II in mature DCs and selectively inhibits presentation of an influenza virus hemagglutinin CD4 T cell epitope generated in early endosomes. These studies highlight a "division of labor" in MHC-II peptide binding, in which immature DCs preferentially present Ags acquired in Rab11a- DM+ late endosomes, whereas mature DCs use recycling MHC-II to present antigenic peptides acquired in both Rab11a+ early endosomes and Rab11a- endosomes for CD4 T cell activation.


Assuntos
Apresentação de Antígeno , Antígenos Virais/imunologia , Linfócitos T CD4-Positivos/imunologia , Células Dendríticas/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Animais , Linfócitos T CD4-Positivos/metabolismo , Células Dendríticas/metabolismo , Endossomos/imunologia , Endossomos/metabolismo , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/metabolismo , Técnicas de Introdução de Genes , Técnicas de Silenciamento de Genes , Genes MHC da Classe II/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Hibridomas , Ativação Linfocitária , Camundongos , Camundongos Knockout , Orthomyxoviridae/imunologia , Ubiquitina-Proteína Ligases/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
16.
ACS Appl Mater Interfaces ; 12(5): 6641-6650, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31939655

RESUMO

There is an immense literature on detection of latent fingerprints (LFPs) with fluorescent nanomaterials because fluorescence is one of the most sensitive detection methods. Although many fluorescent probes have been developed for latent fingerprint detection, many challenges remain, including the low selectivity, complicated processing, high background, and toxicity of nanoparticles used to visualize LFPs. In this study, we demonstrate biocompatible, efficient, and low background LFP detection with poly(vinylpyrrolidone) (PVP) coated fluorescent nanodiamonds (FNDs). PVP-coated FND (FND@PVP) is biocompatible at the cellular level. They neither inhibit cellar proliferation nor induce cell death via apoptosis or other cell killing pathways. Moreover, they do not elicit an immune response in cells. PVP coating enhances the physical adhesion of FND to diverse substrates and in particular results in efficient binding of FND@PVP to fingerprint ridges due to the intrinsic amphiphilicity of PVP. Clear, well-defined ridge structures with first, second, and third-level of LFP details are revealed within minutes by FND@PVP. The combination of this binding specificity and the remarkable optical properties of FND@PVP permits the detection of LPFs with high contrast, efficiency, selectivity, sensitivity, and reduced background interference. Our results demonstrate that background-free imaging via multicolor emission and dual-modal imaging of FND@PVP nanoparticles have great potential for high-resolution imaging of LFPs.

17.
J Anim Sci Technol ; 61(2): 55-60, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31333862

RESUMO

Colibacillosis is one of the major health problems in young piglets resulting in poor health and death caused by Escherichia coli producing F18 pili and Shiga toxin 2e. It is pivotal to reduce colibacillosis in weaned piglets to enhance production performance. In this study, we evaluated synbiotics as the gut health improvement agents in the mouse model challenged with Shiga toxin-producing E. coli (STEC) isolated from piglets. Prebiotic lactulose was formulated with each 5.0 × 106 CFU/mL of Pediococcus acidilactici GB-U15, Lactobacillus plantarum GB-U17, and Lactobacillus plantarum GB 1-3 to produce 3 combinations of synbiotics. A total of 40 three weeks old BALB/c mice were randomly assigned to 4 groups (n = 10): a control group and 3 synbiotics treated groups. Each treatment groups were daily administrated with 5.0 × 106 CFU/mL of one synbiotics for the first week, and every 3 days during the second week. All the mice were challenged with 8.0 × 108 CFU/mL of STEC 5 days after animals began to receive synbiotics. Mice treated with synbiotics based on Pediococcus acidilactici GB-U15 and Lactobacillus plantarum GB-U17 significantly improved daily weight gain compared to mice in other groups. While mice treated with GB-U15 showed better fecal index, no significant differences were observed among groups. Gross lesion and histopathological evaluations showed that mice treated with GB-U15 moderately improved recovery from STEC infection. In conclusion, our results suggest that the synbiotics formulated with lactulose and Pediococcus acidilactici GB-U15 have potential benefits to prevent and improve colibacillosis in weaned piglets.

18.
Methods Mol Biol ; 1988: 271-277, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31147946

RESUMO

Most, if not all, plasma membrane proteins continuously undergo endocytosis and many rapidly recycle from endosomes back to the cell surface to maintain "stable" surface expression. We now describe a biochemical assay that is suited to follow the internalization and recycling kinetics of plasma membrane proteins. This assay involves biotinylation of plasma membrane proteins using sulfo-NHS-SS-biotin, a water-soluble, NHS-ester biotinylation reagent that contains a cleavable disulfide bond that allows for reversible labeling of proteins. Biotinylation is rapid and stable, and does not transfer from cell to cell, and the small size of the biotin probe does not affect cell function.


Assuntos
Bioensaio/métodos , Membrana Celular/metabolismo , Endocitose , Antígenos de Histocompatibilidade Classe II/metabolismo , Animais , Biotina/análogos & derivados , Biotina/metabolismo , Biotinilação , Eletroforese em Gel de Poliacrilamida , Humanos , Succinimidas/metabolismo
19.
J Ginseng Res ; 43(2): 242-251, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30976162

RESUMO

BACKGROUND: Korean Red Ginseng has been widely used in traditional oriental medicine for a prolonged period, and its pharmacological effects have been extensively investigated. In addition, Angelica gigas and deer antlers were also used as a tonic medicine with Korean Red Ginseng as the oriental herbal therapy. METHODS: This study was conducted to evaluate the potential toxicological effect of KGC-HJ3, Korean Red Ginseng with angelica gigas and deer antlers, on reproductive and developmental functions including fertility, early embryonic development, maternal function, and embryo-fetal development. KGC-HJ3 was administered by oral gavage to Sprague-Dawley rats (22 animals per sex per group) at dose levels of 0 mg/kg (control), 500 mg/kg, 1000 mg/kg, and 2000 mg/kg to evaluate the potential toxicological effect on fertility and early embryonic development. In addition, KGC-HJ3 was also administered by oral gavage to mating-proven Sprague-Dawley rats (22 females per group) during the major organogenesis period at dose levels of 0 mg/kg (control), 500 mg/kg, 1000 mg/kg, and 2000 mg/kg to evaluate the potential toxicological effect on maternal function and embryo-fetal development. RESULTS AND CONCLUSION: No test item-related changes in parameters for fertility, early embryonic development, maternal function, and embryo-fetal development were observed during the study period. On the basis of these results, it was concluded that KGC-HJ3 did not have toxicological potential on developmental and reproductive functions. Therefore, no observed adverse effect levels of KGC-HJ3 for fertility, early embryonic development, maternal function, and embryo-fetal development is considered to be at least 2000 mg/kg/day.

20.
Knee ; 26(3): 759-767, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30910628

RESUMO

BACKGROUND: The principle when performing unicompartmental knee replacements (UKR), is to restore the natural alignment as well as the ligament tension. The tension in the ligaments is determined by the position of the joint line and the geometry of the articulating surfaces of the joint. If the surface geometry of the femoral component in a UKR is different from that of the natural knee it might cause abnormal ligament tension. This study was undertaken to determine the surface geometry of the native knee and to compare that with the geometry of different commercially available UKR femoral components. METHODS: Thirty-six native femurs and seven different UKR femoral component designs were included in this study. The sagittal shapes of the native femoral condyles and the prostheses were quantitatively described with the radius ratio (RR) and transition position index (TPI), which were calculated from the radii and transition point of the extension and flexion facets. RESULTS: The different prostheses showed a wider shape variability than the native medial condyles, having at least two times greater coefficient of variation for the RR and TPI. The sagittal shape of three prostheses corresponded to the native medial femoral condyles whereas five prostheses corresponded to the lateral condyles. One prosthesis had curves that fell far outside the native knee shape. CONCLUSION: There was a wider sagittal shape difference between the femoral components compared to the native knees. Clinically, the sagittal position of the prostheses can compensate for these differences, but it might be technically challenging.


Assuntos
Artroplastia do Joelho/instrumentação , Fêmur/diagnóstico por imagem , Prótese do Joelho , Desenho de Prótese , Adulto , Idoso , Feminino , Fêmur/anatomia & histologia , Voluntários Saudáveis , Humanos , Imageamento Tridimensional , Articulação do Joelho/anatomia & histologia , Articulação do Joelho/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA