Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
NPJ Digit Med ; 5(1): 130, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050372

RESUMO

Mass surveillance testing can help control outbreaks of infectious diseases such as COVID-19. However, diagnostic test shortages are prevalent globally and continue to occur in the US with the onset of new COVID-19 variants and emerging diseases like monkeypox, demonstrating an unprecedented need for improving our current methods for mass surveillance testing. By targeting surveillance testing toward individuals who are most likely to be infected and, thus, increasing the testing positivity rate (i.e., percent positive in the surveillance group), fewer tests are needed to capture the same number of positive cases. Here, we developed an Intelligent Testing Allocation (ITA) method by leveraging data from the CovIdentify study (6765 participants) and the MyPHD study (8580 participants), including smartwatch data from 1265 individuals of whom 126 tested positive for COVID-19. Our rigorous model and parameter search uncovered the optimal time periods and aggregate metrics for monitoring continuous digital biomarkers to increase the positivity rate of COVID-19 diagnostic testing. We found that resting heart rate (RHR) features distinguished between COVID-19-positive and -negative cases earlier in the course of the infection than steps features, as early as 10 and 5 days prior to the diagnostic test, respectively. We also found that including steps features increased the area under the receiver operating characteristic curve (AUC-ROC) by 7-11% when compared with RHR features alone, while including RHR features improved the AUC of the ITA model's precision-recall curve (AUC-PR) by 38-50% when compared with steps features alone. The best AUC-ROC (0.73 ± 0.14 and 0.77 on the cross-validated training set and independent test set, respectively) and AUC-PR (0.55 ± 0.21 and 0.24) were achieved by using data from a single device type (Fitbit) with high-resolution (minute-level) data. Finally, we show that ITA generates up to a 6.5-fold increase in the positivity rate in the cross-validated training set and up to a 4.5-fold increase in the positivity rate in the independent test set, including both symptomatic and asymptomatic (up to 27%) individuals. Our findings suggest that, if deployed on a large scale and without needing self-reported symptoms, the ITA method could improve the allocation of diagnostic testing resources and reduce the burden of test shortages.

2.
NPJ Digit Med ; 4(1): 89, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34079049

RESUMO

Prediabetes affects one in three people and has a 10% annual conversion rate to type 2 diabetes without lifestyle or medical interventions. Management of glycemic health is essential to prevent progression to type 2 diabetes. However, there is currently no commercially-available and noninvasive method for monitoring glycemic health to aid in self-management of prediabetes. There is a critical need for innovative, practical strategies to improve monitoring and management of glycemic health. In this study, using a dataset of 25,000 simultaneous interstitial glucose and noninvasive wearable smartwatch measurements, we demonstrated the feasibility of using noninvasive and widely accessible methods, including smartwatches and food logs recorded over 10 days, to continuously detect personalized glucose deviations and to predict the exact interstitial glucose value in real time with up to 84% and 87% accuracy, respectively. We also establish methods for designing variables using data-driven and domain-driven methods from noninvasive wearables toward interstitial glucose prediction.

3.
Artigo em Inglês | MEDLINE | ID: mdl-36170350

RESUMO

INTRODUCTION: Diabetes prevalence continues to grow and there remains a significant diagnostic gap in one-third of the US population that has pre-diabetes. Innovative, practical strategies to improve monitoring of glycemic health are desperately needed. In this proof-of-concept study, we explore the relationship between non-invasive wearables and glycemic metrics and demonstrate the feasibility of using non-invasive wearables to estimate glycemic metrics, including hemoglobin A1c (HbA1c) and glucose variability metrics. RESEARCH DESIGN AND METHODS: We recorded over 25 000 measurements from a continuous glucose monitor (CGM) with simultaneous wrist-worn wearable (skin temperature, electrodermal activity, heart rate, and accelerometry sensors) data over 8-10 days in 16 participants with normal glycemic state and pre-diabetes (HbA1c 5.2-6.4). We used data from the wearable to develop machine learning models to predict HbA1c recorded on day 0 and glucose variability calculated from the CGM. We tested the accuracy of the HbA1c model on a retrospective, external validation cohort of 10 additional participants and compared results against CGM-based HbA1c estimation models. RESULTS: A total of 250 days of data from 26 participants were collected. Out of the 27 models of glucose variability metrics that we developed using non-invasive wearables, 11 of the models achieved high accuracy (<10% mean average per cent error, MAPE). Our HbA1c estimation model using non-invasive wearables data achieved MAPE of 5.1% on an external validation cohort. The ranking of wearable sensor's importance in estimating HbA1c was skin temperature (33%), electrodermal activity (28%), accelerometry (25%), and heart rate (14%). CONCLUSIONS: This study demonstrates the feasibility of using non-invasive wearables to estimate glucose variability metrics and HbA1c for glycemic monitoring and investigates the relationship between non-invasive wearables and the glycemic metrics of glucose variability and HbA1c. The methods used in this study can be used to inform future studies confirming the results of this proof-of-concept study.


Assuntos
Estado Pré-Diabético , Dispositivos Eletrônicos Vestíveis , Glicemia , Glucose , Hemoglobinas Glicadas/análise , Humanos , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA