Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
2.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769133

RESUMO

Preterm birth is a major contributor to neonatal morbidity and mortality. Complications of prematurity such as bronchopulmonary dysplasia (BPD, affecting the lung), pulmonary hypertension associated with BPD (BPD-PH, heart), white matter injury (WMI, brain), retinopathy of prematurity (ROP, eyes), necrotizing enterocolitis (NEC, gut) and sepsis are among the major causes of long-term morbidity in infants born prematurely. Though the origins are multifactorial, inflammation and in particular the imbalance of pro- and anti-inflammatory mediators is now recognized as a key driver of the pathophysiology underlying these illnesses. Here, we review the involvement of the interleukin (IL)-1 family in perinatal inflammation and its clinical implications, with a focus on the potential of these cytokines as therapeutic targets for the development of safe and effective treatments for early life inflammatory diseases.


Assuntos
Displasia Broncopulmonar , Doenças do Recém-Nascido , Nascimento Prematuro , Retinopatia da Prematuridade , Lactente , Gravidez , Feminino , Recém-Nascido , Humanos , Interleucina-1 , Recém-Nascido Prematuro , Anti-Inflamatórios/uso terapêutico , Displasia Broncopulmonar/etiologia , Displasia Broncopulmonar/tratamento farmacológico , Doenças do Recém-Nascido/tratamento farmacológico , Inflamação/complicações , Inflamação/tratamento farmacológico , Retinopatia da Prematuridade/tratamento farmacológico
3.
Sci Transl Med ; 14(639): eaaz8454, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35385341

RESUMO

Postnatal maturation of the immune system is poorly understood, as is its impact on illnesses afflicting term or preterm infants, such as bronchopulmonary dysplasia (BPD) and BPD-associated pulmonary hypertension. These are both cardiopulmonary inflammatory diseases that cause substantial mortality and morbidity with high treatment costs. Here, we characterized blood samples collected from 51 preterm infants longitudinally at five time points, 20 healthy term infants at birth and age 3 to 16 weeks, and 5 healthy adults. We observed strong associations between type 2 immune polarization in circulating CD3+CD4+ T cells and cardiopulmonary illness, with odds ratios up to 24. Maternal magnesium sulfate therapy, delayed hepatitis B vaccination, and increasing fetal, but not maternal, chorioamnionitis severity were associated with attenuated type 2 polarization. Blocking type 2 mediators such as interleukin-4 (IL-4), IL-5, IL-13, or signal transducer and activator of transcription 6 (STAT6) in murine neonatal cardiopulmonary disease in vivo prevented changes in cell type composition, increases in IL-1ß and IL-13, and losses of pulmonary capillaries, but not gains in larger vessels. Thereby, type 2 blockade ameliorated lung inflammation, protected alveolar and vascular integrity, and confirmed the pathological impact of type 2 cytokines and STAT6. In-depth flow cytometry and single-cell transcriptomics of mouse lungs further revealed complex associations between immune polarization and cardiopulmonary disease. Thus, this work advances knowledge on developmental immunology and its impact on early life disease and identifies multiple therapeutic approaches that may relieve inflammation-driven suffering in the youngest patients.


Assuntos
Displasia Broncopulmonar , Interleucina-13 , Animais , Displasia Broncopulmonar/etiologia , Displasia Broncopulmonar/patologia , Displasia Broncopulmonar/prevenção & controle , Feminino , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Inflamação/complicações , Pulmão/patologia , Camundongos , Gravidez
4.
Cell Chem Biol ; 29(4): 586-596.e4, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-34699747

RESUMO

Harnessing the immunomodulatory activity of cytokines is a focus of therapies targeting inflammatory disease. The interleukin (IL)-1 superfamily contains pro-inflammatory and anti-inflammatory members that help orchestrate the immune response in adaptive and innate immunity. Of these molecules, IL-37 has robust anti-inflammatory activity across a range of disease models through inhibition of pro-inflammatory signaling cascades downstream of tumor necrosis factor, IL-1, and toll-like receptor pathways. We find that IL-37 is unstable with a poor pharmacokinetic and manufacturing profile. Here, we present the engineering of IL-37 from an unstable cytokine into an anti-inflammatory molecule with an excellent therapeutic likeness. We overcame these shortcomings through site-directed mutagenesis, the addition of a non-native disulfide bond, and the engineering of IL-37 as an Fc-fusion protein. Our results provide a platform for preclinical testing of IL-37 Fc-fusion proteins. The engineering approaches undertaken herein will apply to the conversion of similar potent yet short-acting cytokines into therapeutics.


Assuntos
Anti-Inflamatórios , Citocinas , Citocinas/metabolismo , Imunidade Inata , Imunomodulação , Engenharia de Proteínas
5.
Nat Commun ; 12(1): 6602, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34782627

RESUMO

The MHC class I-mediated antigen presentation pathway plays a critical role in antiviral immunity. Here we show that the MHC class I pathway is targeted by SARS-CoV-2. Analysis of the gene expression profile from COVID-19 patients as well as SARS-CoV-2 infected epithelial cell lines reveals that the induction of the MHC class I pathway is inhibited by SARS-CoV-2 infection. We show that NLRC5, an MHC class I transactivator, is suppressed both transcriptionally and functionally by the SARS-CoV-2 ORF6 protein, providing a mechanistic link. SARS-CoV-2 ORF6 hampers type II interferon-mediated STAT1 signaling, resulting in diminished upregulation of NLRC5 and IRF1 gene expression. Moreover, SARS-CoV-2 ORF6 inhibits NLRC5 function via blocking karyopherin complex-dependent nuclear import of NLRC5. Collectively, our study uncovers an immune evasion mechanism of SARS-CoV-2 that targets the function of key MHC class I transcriptional regulators, STAT1-IRF1-NLRC5.


Assuntos
COVID-19/imunologia , Genes MHC Classe I/imunologia , Fator Regulador 1 de Interferon/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , SARS-CoV-2/genética , Fator de Transcrição STAT1/antagonistas & inibidores , Proteínas Virais/metabolismo , COVID-19/genética , COVID-19/patologia , COVID-19/virologia , Linhagem Celular , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/isolamento & purificação , Transdução de Sinais , Proteínas Virais/imunologia
6.
Sci Rep ; 11(1): 3258, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33547395

RESUMO

Checkpoint blockade-mediated immunotherapy is emerging as an effective treatment modality for multiple cancer types. However, cancer cells frequently evade the immune system, compromising the effectiveness of immunotherapy. It is crucial to develop screening methods to identify the patients who would most benefit from these therapies because of the risk of the side effects and the high cost of treatment. Here we show that expression of the MHC class I transactivator (CITA), NLRC5, is important for efficient responses to anti-CTLA-4 and anti-PD1 checkpoint blockade therapies. Melanoma tumors derived from patients responding to immunotherapy exhibited significantly higher expression of NLRC5 and MHC class I-related genes compared to non-responding patients. In addition, multivariate analysis that included the number of tumor-associated non-synonymous mutations, predicted neo-antigen load and PD-L2 expression was capable of further stratifying responders and non-responders to anti-CTLA4 therapy. Moreover, expression or methylation of NLRC5 together with total somatic mutation number were significantly correlated with increased patient survival. These results suggest that NLRC5 tumor expression, alone or together with tumor mutation load constitutes a valuable predictive biomarker for both prognosis and response to anti-CTLA-4 and potentially anti-PD1 blockade immunotherapy in melanoma patients.


Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inibidores de Checkpoint Imunológico/uso terapêutico , Peptídeos e Proteínas de Sinalização Intracelular/genética , Melanoma/tratamento farmacológico , Humanos , Imunoterapia , Melanoma/diagnóstico , Melanoma/genética , Mutação/efeitos dos fármacos , Prognóstico
7.
Immunology ; 162(3): 252-261, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32633419

RESUMO

The presentation of antigenic peptides by major histocompatibility complex (MHC) class I and class II molecules is crucial for activation of the adaptive immune system. The nucleotide-binding domain and leucine-rich repeat receptor family members CIITA and NLRC5 function as the major transcriptional activators of MHC class II and class I gene expression, respectively. Since the identification of NLRC5 as the master regulator of MHC class I and class-I-related genes, there have been major advances in understanding the function of NLRC5 in infectious diseases and cancer. Here, we discuss the biological significance and mechanism of NLRC5-dependent MHC class I expression.


Assuntos
Imunidade Adaptativa , Antígenos de Histocompatibilidade Classe I/metabolismo , Inflamassomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias/metabolismo , Transativadores/metabolismo , Animais , Regulação da Expressão Gênica , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Inflamassomos/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias/genética , Neoplasias/imunologia , Transdução de Sinais , Evasão Tumoral , Microambiente Tumoral
8.
Nat Commun ; 11(1): 5794, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33188181

RESUMO

Necrotizing enterocolitis (NEC) is a severe, currently untreatable intestinal disease that predominantly affects preterm infants and is driven by poorly characterized inflammatory pathways. Here, human and murine NEC intestines exhibit an unexpected predominance of type 3/TH17 polarization. In murine NEC, pro-inflammatory type 3 NKp46-RORγt+Tbet+ innate lymphoid cells (ILC3) are 5-fold increased, whereas ILC1 and protective NKp46+RORγt+ ILC3 are obliterated. Both species exhibit dysregulation of intestinal TLR repertoires, with TLR4 and TLR8 increased, but TLR5-7 and TLR9-12 reduced. Transgenic IL-37 effectively protects mice from intestinal injury and mortality, whilst exogenous IL-37 is only modestly efficacious. Mechanistically, IL-37 favorably modulates immune homeostasis, TLR repertoires and microbial diversity. Moreover, IL-37 and its receptor IL-1R8 are reduced in human NEC epithelia, and IL-37 is lower in blood monocytes from infants with NEC and/or lower birthweight. Our results on NEC pathomechanisms thus implicate type 3 cytokines, TLRs and IL-37 as potential targets for novel NEC therapies.


Assuntos
Enterocolite Necrosante/tratamento farmacológico , Enterocolite Necrosante/imunologia , Imunidade Adaptativa , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Enterocolite Necrosante/sangue , Enterocolite Necrosante/patologia , Homeostase , Humanos , Imunidade Inata , Recém-Nascido , Mediadores da Inflamação/metabolismo , Interleucina-1 , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Linfócitos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores Toll-Like/metabolismo
9.
Front Immunol ; 10: 1480, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31354700

RESUMO

Pulmonary hypertension secondary to bronchopulmonary dysplasia (BPD-PH) represents a major complication of BPD in extremely preterm infants for which there are currently no safe and effective interventions. The abundance of interleukin-1 (IL-1) is strongly correlated with the severity and long-term outcome of BPD infants and we have previously shown that IL-1 receptor antagonist (IL-1Ra) protects against murine BPD; therefore, we hypothesized that IL-1Ra may also be effective against BPD-PH. We employed daily injections of IL-1Ra in a murine model in which BPD/BPD-PH was induced by antenatal LPS and postnatal hyperoxia of 65% O2. Pups reared in hyperoxia for 28 days exhibited a BPD-PH-like disease accompanied by significant changes in pulmonary vascular morphology: micro-CT revealed an 84% reduction in small vessels (4-5 µm diameter) compared to room air controls; this change was prevented by IL-1Ra. Pulmonary vascular resistance, assessed at day 28 of life by echocardiography using the inversely-related surrogate marker time-to-peak-velocity/right ventricular ejection time (TPV/RVET), increased in hyperoxic mice (0.27 compared to 0.32 in air controls), and fell significantly with daily IL-1Ra treatment (0.31). Importantly, in vivo cine-angiography revealed that this protection afforded by IL-1Ra treatment for 28 days is maintained at day 60 of life. Despite an increased abundance of mediators of pulmonary angiogenesis in day 5 lung lysates, namely vascular endothelial growth factor (VEGF) and endothelin-1 (ET-1), no difference was detected in ex vivo pulmonary vascular reactivity between air and hyperoxia mice as measured in precision cut lung slices, or by immunohistochemistry in alpha-smooth muscle actin (α-SMA) and endothelin receptor type-A (ETA) at day 28. Further, on day 28 of life we observed cardiac fibrosis by Sirius Red staining, which was accompanied by an increase in mRNA expression of galectin-3 and CCL2 (chemokine (C-C motif) ligand 2) in whole hearts of hyperoxic pups, which improved with IL-1Ra. In summary, our findings suggest that daily administration of the anti-inflammatory IL-1Ra prevents the increase in pulmonary vascular resistance and the pulmonary dysangiogenesis of murine BPD-PH, thus pointing to IL-1Ra as a promising candidate for the treatment of both BPD and BPD-PH.


Assuntos
Anti-Inflamatórios/farmacologia , Displasia Broncopulmonar/prevenção & controle , Hipertensão Pulmonar/prevenção & controle , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Resistência Vascular/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Displasia Broncopulmonar/patologia , Modelos Animais de Doenças , Endotelina-1/metabolismo , Hiperóxia , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Fator A de Crescimento do Endotélio Vascular/metabolismo
10.
Sci Immunol ; 2(8)2017 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-28783685

RESUMO

Dysregulation of the inflammatory response underlies numerous diseases. Although most interleukin-1 family cytokines are proinflammatory, human interleukin-37 (IL-37) is a powerful, broad-spectrum inhibitor of inflammation and immunity. We determined the crystal structure of IL-37 to establish the anti-inflammatory mechanism of this key cytokine in view of developing IL-37-based therapies. We found that two ß-trefoil fold IL-37 molecules form a head-to-head dimer that is stable in solution. IL-37 variants mutated to convert the cytokine into an obligate monomer were up to 13-fold more effective than the dimer in suppressing proinflammatory events both in primary human blood cells and in vivo in murine endotoxic shock. Therapeutic exploitation of the powerful anti-inflammatory properties of monomeric IL-37 may prove beneficial in treating a wide range of inflammatory and autoimmune disorders.

11.
J Cell Mol Med ; 21(6): 1128-1138, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27957795

RESUMO

Bronchopulmonary dysplasia (BPD) is a severe lung disease of preterm infants, which is characterized by fewer, enlarged alveoli and increased inflammation. BPD has grave consequences for affected infants, but no effective and safe therapy exists. We previously showed that prophylactic treatment with interleukin-1 receptor antagonist (IL-1Ra) prevents murine BPD induced by perinatal inflammation and hyperoxia. Here, we used the same BPD model to assess whether an alternative anti-inflammatory agent, protein C (PC), is as effective as IL-1Ra against BPD. We also tested whether delayed administration or a higher dose of IL-1Ra affects its ability to ameliorate BPD and investigated aspects of drug safety. Pups were reared in room air (21% O2 ) or hyperoxia (65% or 85% O2 ) and received daily injections with vehicle, 1200 IU/kg PC, 10 mg/kg IL-1Ra (early or late onset) or 100 mg/kg IL-1Ra. After 3 or 28 days, lung and brain histology were assessed and pulmonary cytokines were analysed using ELISA and cytokine arrays. We found that PC only moderately reduced the severe impact of BPD on lung structure (e.g. 18% increased alveolar number by PC versus 34% by IL-1Ra); however, PC significantly reduced IL-1ß, IL-1Ra, IL-6 and macrophage inflammatory protein (MIP)-2 by up to 89%. IL-1Ra at 10 mg/kg prevented BPD more effectively than 100 mg/kg IL-1Ra, but only if treatment commenced at day 1 of life. We conclude that prophylactic low-dose IL-1Ra and PC ameliorate BPD and have potential as the first remedy for one of the most devastating diseases preterm babies face.


Assuntos
Displasia Broncopulmonar/tratamento farmacológico , Inflamação/tratamento farmacológico , Proteína Antagonista do Receptor de Interleucina 1/administração & dosagem , Proteína C/administração & dosagem , Animais , Animais Recém-Nascidos , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/efeitos adversos , Displasia Broncopulmonar/complicações , Displasia Broncopulmonar/patologia , Modelos Animais de Doenças , Feminino , Humanos , Lactente , Recém-Nascido , Inflamação/complicações , Inflamação/patologia , Proteína Antagonista do Receptor de Interleucina 1/efeitos adversos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Camundongos , Gravidez , Proteína C/efeitos adversos , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/patologia
12.
J Leukoc Biol ; 101(4): 901-911, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27881605

RESUMO

The interleukin (IL)-1 family member IL-37 is one of few anti-inflammatory cytokines, and it is capable of countering a broad spectrum of proinflammatory assaults. Although it is known that leukocytes are a major source of IL-37, knowledge on IL-37 production and secretion in specific immune cell types remains limited. Thus, we investigated IL-37 mRNA expression as well as protein production and secretion in human PBMCs. In PBMCs stimulated with agonists of Toll-like receptors (TLRs) 1-6 and 9, IL1F7 (the IL-37-encoding gene) was induced up to 9-fold, peaked at 6-8 h and returned to steady-state at 72 h. LPS-induced IL1F7 expression comprised isoforms b and c but not a and e Flow cytometry revealed that among IL-37+ PBMCs, monocytes predominated (81-91%), but T cells (6-8%) and myeloid dendritic cells (mDCs, 1-2%) also contributed to the IL-37+ leukocyte pool. Monocytes and mDCs, but not T cells, were capable of secreting IL-37. Whereas monocytes and mDCs secreted IL-37 upon LPS stimulation, only mDCs also released IL-37 at steady-state. Among monocyte subsets, IL-37 was LPS inducible and secreted only in classical and, although less pronounced, in intermediate monocytes; secretion was observed as early as 3 h after stimulation. Overall, our data suggest that constitutive IL-37 secretion by mDCs may serve to maintain an anti-inflammatory milieu at steady state, whereas IL-37 is stored in monocytes to be available for rapid release upon inflammatory encounters, thus acting as a novel anti-inflammatory alarmin. These insights may prove important to advancing towards clinical use the protective functions of one of the most powerful anti-inflammatory mediators so far discovered.


Assuntos
Células Dendríticas/metabolismo , Interleucina-1/metabolismo , Monócitos/metabolismo , Adulto , Células Dendríticas/efeitos dos fármacos , Citometria de Fluxo , Humanos , Cinética , Ligantes , Lipopolissacarídeos/farmacologia , Monócitos/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Receptores Toll-Like/metabolismo
13.
Expert Rev Mol Med ; 18: e12, 2016 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-27341512

RESUMO

Necrotising enterocolitis (NEC) is an uncommon, but devastating intestinal inflammatory disease that predominantly affects preterm infants. NEC is sometimes dubbed the spectre of neonatal intensive care units, as its onset is insidiously non-specific, and once the disease manifests, the damage inflicted on the baby's intestine is already disastrous. Subsequent sepsis and multi-organ failure entail a mortality of up to 65%. Development of effective treatments for NEC has stagnated, largely because of our lack of understanding of NEC pathogenesis. It is clear, however, that NEC is driven by a profoundly dysregulated immune system. NEC is associated with local increases in pro-inflammatory mediators, e.g. Toll-like receptor (TLR) 4, nuclear factor-κB, tumour necrosis factor, platelet-activating factor (PAF), interleukin (IL)-18, interferon-gamma, IL-6, IL-8 and IL-1ß. Deficiencies in counter-regulatory mechanisms, including IL-1 receptor antagonist (IL-1Ra), TLR9, PAF-acetylhydrolase, transforming growth factor beta (TGF-ß)1&2, IL-10 and regulatory T cells likely facilitate a pro-inflammatory milieu in the NEC-afflicted intestine. There is insufficient evidence to conclude a predominance of an adaptive Th1-, Th2- or Th17-response in the disease. Our understanding of the accompanying regulation of systemic immunity remains poor; however, IL-1Ra, IL-6, IL-8 and TGF-ß1 show promise as biomarkers. Here, we chart the emerging immunological landscape that underpins NEC by reviewing the involvement and potential clinical implications of innate and adaptive immune mediators and their regulation in NEC.


Assuntos
Suscetibilidade a Doenças/imunologia , Enterocolite Necrosante/etiologia , Enterocolite Necrosante/metabolismo , Fatores Etários , Animais , Biomarcadores , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Progressão da Doença , Suscetibilidade a Doenças/metabolismo , Enterocolite Necrosante/diagnóstico , Enterocolite Necrosante/epidemiologia , Humanos , Sistema Imunitário/citologia , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Imunidade , Fatores Imunológicos/metabolismo , Avaliação de Resultados da Assistência ao Paciente , Fenótipo , Receptores Imunológicos/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Fatores de Risco , Índice de Gravidade de Doença , Transdução de Sinais
14.
Nat Immunol ; 16(4): 354-65, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25729923

RESUMO

Interleukin 37 (IL-37) and IL-1R8 (SIGIRR or TIR8) are anti-inflammatory orphan members of the IL-1 ligand family and IL-1 receptor family, respectively. Here we demonstrate formation and function of the endogenous ligand-receptor complex IL-37-IL-1R8-IL-18Rα. The tripartite complex assembled rapidly on the surface of peripheral blood mononuclear cells upon stimulation with lipopolysaccharide. Silencing of IL-1R8 or IL-18Rα impaired the anti-inflammatory activity of IL-37. Whereas mice with transgenic expression of IL-37 (IL-37tg mice) with intact IL-1R8 were protected from endotoxemia, IL-1R8-deficient IL-37tg mice were not. Proteomic and transcriptomic investigations revealed that IL-37 used IL-1R8 to harness the anti-inflammatory properties of the signaling molecules Mer, PTEN, STAT3 and p62(dok) and to inhibit the kinases Fyn and TAK1 and the transcription factor NF-κB, as well as mitogen-activated protein kinases. Furthermore, IL-37-IL-1R8 exerted a pseudo-starvational effect on the metabolic checkpoint kinase mTOR. IL-37 thus bound to IL-18Rα and exploited IL-1R8 to activate a multifaceted intracellular anti-inflammatory program.


Assuntos
Subunidade alfa de Receptor de Interleucina-18/imunologia , Interleucina-1/imunologia , Leucócitos Mononucleares/imunologia , Receptores de Interleucina-1/imunologia , Transdução de Sinais/imunologia , Animais , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Imunidade Inata , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Interleucina-1/genética , Subunidade alfa de Receptor de Interleucina-18/antagonistas & inibidores , Subunidade alfa de Receptor de Interleucina-18/genética , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/patologia , Lipopolissacarídeos/farmacologia , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/imunologia , Camundongos , Camundongos Transgênicos , NF-kappa B/genética , NF-kappa B/imunologia , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/imunologia , Ligação Proteica , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/imunologia , Proteínas Proto-Oncogênicas c-fyn/genética , Proteínas Proto-Oncogênicas c-fyn/imunologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/imunologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/imunologia , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/imunologia , Receptores de Interleucina-1/antagonistas & inibidores , Receptores de Interleucina-1/deficiência , Receptores de Interleucina-1/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/imunologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/imunologia , c-Mer Tirosina Quinase
15.
J Immunol ; 192(2): 589-602, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24337385

RESUMO

IL-32 is a multifaceted cytokine with a role in infections, autoimmune diseases, and cancer, and it exerts diverse functions, including aggravation of inflammation and inhibition of virus propagation. We previously identified IL-32 as a critical regulator of endothelial cell (EC) functions, and we now reveal that IL-32 also possesses angiogenic properties. The hyperproliferative ECs of human pulmonary arterial hypertension and glioblastoma multiforme exhibited a markedly increased abundance of IL-32, and, significantly, the cytokine colocalized with integrin αVß3. Vascular endothelial growth factor (VEGF) receptor blockade, which resulted in EC hyperproliferation, increased IL-32 three-fold. Small interfering RNA-mediated silencing of IL-32 negated the 58% proliferation of ECs that occurred within 24 h in scrambled-transfected controls. Reduction of IL-32 neither affected apoptosis (insignificant changes in Bak-1, Bcl-2, Bcl-xL, lactate dehydrogenase, annexin V, and propidium iodide) nor VEGF or TGF-ß levels, but siIL-32-transfected adult and neonatal ECs produced up to 61% less NO, IL-8, and matrix metalloproteinase-9, and up to 3-fold more activin A and endostatin. In coculture-based angiogenesis assays, IL-32γ dose-dependently increased tube formation up to 3-fold; an αVß3 inhibitor prevented this activity and reduced IL-32γ-induced IL-8 by 85%. In matrigel plugs loaded with IL-32γ, VEGF, or vehicle and injected into live mice, we observed the anticipated VEGF-induced increase in neocapillarization (8-fold versus vehicle), but unexpectedly, IL-32γ was equally angiogenic. A second signal such as IFN-γ was required to render cells responsive to exogenous IL-32γ; importantly, this was confirmed using a completely synthetic preparation of IL-32γ. In summary, we add angiogenic properties that are mediated by integrin αVß3 but VEGF-independent to the portfolio of IL-32, implicating a role for this versatile cytokine in pulmonary arterial hypertension and neoplastic diseases.


Assuntos
Interleucinas/metabolismo , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Ativinas/metabolismo , Animais , Apoptose/fisiologia , Células Cultivadas , Endostatinas/metabolismo , Hipertensão Pulmonar Primária Familiar , Glioblastoma/embriologia , Glioblastoma/patologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Integrina alfaVbeta3/metabolismo , Interferon gama/metabolismo , Interleucina-8/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Óxidos de Nitrogênio/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
16.
Proc Natl Acad Sci U S A ; 110(35): 14384-9, 2013 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23946428

RESUMO

Bronchopulmonary dysplasia (BPD) is a common lung disease of premature infants, with devastating short- and long-term consequences. The pathogenesis of BPD is multifactorial, but all triggers cause pulmonary inflammation. No therapy exists; therefore, we investigated whether the anti-inflammatory interleukin-1 receptor antagonist (IL-1Ra) prevents murine BPD. We precipitated BPD by perinatal inflammation (lipopolysaccharide injection to pregnant dams) and rearing pups in hyperoxia (65% or 85% O2). Pups were treated daily with IL-1Ra or vehicle for up to 28 d. Vehicle-injected animals in both levels of hyperoxia developed a severe BPD-like lung disease (alveolar number and gas exchange area decreased by up to 60%, alveolar size increased up to fourfold). IL-1Ra prevented this structural disintegration at 65%, but not 85% O2. Hyperoxia depleted pulmonary immune cells by 67%; however, extant macrophages and dendritic cells were hyperactivated, with CD11b and GR1 (Ly6G/C) highly expressed. IL-1Ra partially rescued the immune cell population in hyperoxia (doubling the viable cells), reduced the percentage that were activated by up to 63%, and abolished the unexpected persistence of IL-1α and IL-1ß on day 28 in hyperoxia/vehicle-treated lungs. On day 3, perinatal inflammation and hyperoxia each triggered a distinct pulmonary immune response, with some proinflammatory mediators increasing up to 20-fold and some amenable to partial or complete reversal with IL-1Ra. In summary, our analysis reveals a pivotal role for IL-1α/ß in murine BPD and an involvement for MIP (macrophage inflammatory protein)-1α and TREM (triggering receptor expressed on myeloid cells)-1. Because it effectively shields newborn mice from BPD, IL-1Ra emerges as a promising treatment for a currently irremediable disease that may potentially brighten the prognosis of the tiny preterm patients.


Assuntos
Displasia Broncopulmonar/prevenção & controle , Hiperóxia/complicações , Inflamação/complicações , Proteína Antagonista do Receptor de Interleucina 1/fisiologia , Animais , Displasia Broncopulmonar/etiologia , Modelos Animais de Doenças , Feminino , Humanos , Recém-Nascido , Lipopolissacarídeos/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA