Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Angle Orthod ; 94(2): 207-215, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37913813

RESUMO

OBJECTIVES: To compare facial growth prediction models based on the partial least squares and artificial intelligence (AI). MATERIALS AND METHODS: Serial longitudinal lateral cephalograms from 410 patients who had not undergone orthodontic treatment but had taken serial cephalograms were collected from January 2002 to December 2022. On every image, 46 skeletal and 32 soft-tissue landmarks were identified manually. Growth prediction models were constructed using multivariate partial least squares regression (PLS) and a deep learning method based on the TabNet deep neural network incorporating 161 predictor, and 156 response, variables. The prediction accuracy between the two methods was compared. RESULTS: On average, AI showed less prediction error by 2.11 mm than PLS. Among the 78 landmarks, AI was more accurate in 63 landmarks, whereas PLS was more accurate in nine landmarks, including cranial base landmarks. The remaining six landmarks showed no statistical difference between the two methods. Overall, soft-tissue landmarks, landmarks in the mandible, and growth in the vertical direction showed greater prediction errors than hard-tissue landmarks, landmarks in the maxilla, and growth changes in the horizontal direction, respectively. CONCLUSIONS: PLS and AI methods seemed to be valuable tools for predicting growth. PLS accurately predicted landmarks with low variability in the cranial base. In general, however, AI outperformed, particularly for those landmarks in the maxilla and mandible. Applying AI for growth prediction might be more advantageous when uncertainty is considerable.


Assuntos
Inteligência Artificial , Face , Humanos , Análise dos Mínimos Quadrados , Face/diagnóstico por imagem , Mandíbula , Maxila/diagnóstico por imagem
2.
Angle Orthod ; 92(6): 705-713, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35980769

RESUMO

OBJECTIVES: To develop a facial growth prediction model incorporating individual skeletal and soft tissue characteristics. MATERIALS AND METHODS: Serial longitudinal lateral cephalograms were collected from 303 children (166 girls and 137 boys), who had never undergone orthodontic treatment. A growth prediction model was devised by applying the multivariate partial least squares (PLS) algorithm, with 161 predictor variables. Response variables comprised 78 lateral cephalogram landmarks. Multiple linear regression analysis was performed to investigate factors influencing growth prediction errors. RESULTS: Using the leave-one-out cross-validation method, a PLS model with 30 components was developed. Younger age at prediction resulted in greater prediction error (0.03 mm/y). Further, prediction error increased in proportion to the growth prediction interval (0.24 mm/y). Girls, subjects with Class II malocclusion, growth in the vertical direction, skeletal landmarks, and landmarks on the maxilla were associated with more accurate prediction results than boys, subjects with Class I or III malocclusion, growth in the anteroposterior direction, soft tissue landmarks, and landmarks on the mandible, respectively. CONCLUSIONS: The prediction error of the prediction model was proportional to the remaining growth potential. PLS growth prediction seems to be a versatile approach that can incorporate large numbers of predictor variables to predict numerous landmarks for an individual subject.


Assuntos
Face , Má Oclusão Classe II de Angle , Masculino , Criança , Feminino , Humanos , Análise dos Mínimos Quadrados , Cefalometria/métodos , Face/anatomia & histologia , Má Oclusão Classe II de Angle/diagnóstico por imagem , Má Oclusão Classe II de Angle/terapia , Mandíbula
3.
Angle Orthod ; 92(2): 226-232, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34605860

RESUMO

OBJECTIVES: To determine if an automated superimposition method using six landmarks (Sella, Nasion, Porion, Orbitale, Basion, and Pterygoid) would be more suitable than the traditional Sella-Nasion (SN) method to evaluate growth changes. MATERIALS AND METHODS: Serial lateral cephalograms at an average interval of 2.7 years were taken on 268 growing children who had not undergone orthodontic treatment. The T1 and T2 lateral images were manually traced. Three different superimposition methods: Björk's structural method, conventional SN, and the multiple landmark (ML) superimposition methods were applied. Bjork's structural method was used as the gold standard. Comparisons among the superimposition methods were carried out by measuring the linear distances between Anterior Nasal Spine, point A, point B, and Pogonion using each superimposition method. Multiple linear regression analysis was performed to identify factors that could affect the accuracy of the superimpositions. RESULTS: The ML superimposition method demonstrated smaller differences from Björk's method than the conventional SN method did. Greater differences among the cephalometric landmarks tested resulted when: the designated point was farther from the cranial base, the T1 age was older, and the more time elapsed between T1 and T2. CONCLUSIONS: From the results of this study in growing patients, the ML superimposition method seems to be more similar to Björk's structural method than the SN superimposition method. A major advantage of the ML method is likely to be that it can be applied automatically and may be just as reliable as manual superimposition methods.


Assuntos
Base do Crânio , Cefalometria/métodos , Criança , Humanos , Radiografia , Reprodutibilidade dos Testes , Base do Crânio/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA