Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Ginseng Res ; 48(2): 149-162, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38465223

RESUMO

Ginseng, the roots of Panax species, is an important medicinal herb used as a tonic. As ginsenosides are key bioactive components of ginseng, holistic chemical profiling of them has provided many insights into understanding ginseng. Mass spectrometry has been a major methodology for profiling, which has been applied to realize numerous goals in ginseng research, such as the discrimination of different species, geographical origins, and ages, and the monitoring of processing and biotransformation. This review summarizes the various applications of ginsenoside profiling in ginseng research over the last three decades that have contributed to expanding our understanding of ginseng. However, we also note that most of the studies overlooked a crucial factor that influences the levels of ginsenosides: genetic variation. To highlight the effects of genetic variation on the chemical contents, we present our results of untargeted and targeted ginsenoside profiling of different genotypes cultivated under identical conditions, in addition to data regarding genome-level genetic diversity. Additionally, we analyze the other limitations of previous studies, such as imperfect variable control, deficient metadata, and lack of additional effort to validate causation. We conclude that the values of ginsenoside profiling studies can be enhanced by overcoming such limitations, as well as by integrating with other -omics techniques.

2.
Sci Rep ; 13(1): 22325, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102332

RESUMO

The Araliaceae contain many valuable species in medicinal and industrial aspects. We performed intensive phylogenomics using the plastid genome (plastome) and 45S nuclear ribosomal DNA sequences. A total of 66 plastome sequences were used, 13 of which were newly assembled in this study, 12 from new sequences, and one from existing data. While Araliaceae plastomes showed conserved genome structure, phylogenetic reconstructions based on four different plastome datasets revealed phylogenetic discordance within the Asian Palmate group. The divergence time estimation revealed that splits in two Araliaceae subfamilies and the clades exhibiting phylogenetic discordances in the Asian Palmate group occurred at two climatic optima, suggesting that global warming events triggered species divergence, particularly the rapid diversification of the Asian Palmate group during the Middle Miocene. Nucleotide substitution analyses indicated that the Hydrocotyloideae plastomes have undergone accelerated AT-biased mutations (C-to-T transitions) compared with the Aralioideae plastomes, and the acceleration may occur in their mitochondrial and nuclear genomes as well. This implies that members of the genus Hydrocotyle, the only aquatic plants in the Araliaceae, have experienced a distinct evolutionary history from the other species. We also discussed the intercontinental disjunction in the genus Panax and proposed a hypothesis to complement the previously proposed hypothesis. Our results provide the evolutionary trajectory of Araliaceae and advance our current understanding of the evolution of Araliaceae species.


Assuntos
Araliaceae , Centella , Genomas de Plastídeos , Panax , Filogenia , Mutação , Panax/genética , Evolução Molecular
3.
Nanomaterials (Basel) ; 13(5)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36903743

RESUMO

Thermoelectric (TE) materials have been considered as a promising energy harvesting technology for sustainably providing power to electronic devices. In particular, organic-based TE materials that consist of conducting polymers and carbon nanofillers make a large variety of applications. In this work, we develop organic TE nanocomposites via successive spraying of intrinsically conductive polymers such as polyaniline (PANi) and poly(3,4-ethylenedioxy- thiophene):poly(styrenesulfonate) (PEDOT:PSS) and carbon nanofillers, and single-walled carbon nanotubes (SWNT). It is found that the growth rate of the layer-by-layer (LbL) thin films, which comprise a PANi/SWNT-PEDOT:PSS repeating sequence, made by the spraying method is greater than that of the same ones assembled by traditional dip coating. The surface structure of multilayer thin films constructed by the spraying approach show excellent coverage of highly networked individual and bundled SWNT, which is similarly to what is observed when carbon nanotubes-based LbL assemblies are formed by classic dipping. The multilayer thin films via the spray-assisted LbL process exhibit significantly improved TE performances. A 20-bilayer PANi/SWNT-PEDOT:PSS thin film (~90 nm thick) yields an electrical conductivity of 14.3 S/cm and Seebeck coefficient of 76 µV/K. These two values translate to a power factor of 8.2 µW/m·K2, which is 9 times as large as the same films fabricated by a classic immersion process. We believe that this LbL spraying method will open up many opportunities in developing multifunctional thin films for large-scaled industrial use due to rapid processing and the ease with which it is applied.

4.
Hortic Res ; 10(1): uhac246, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36643742

RESUMO

Chimeric plants composed of green and albino tissues have great ornamental value. To unveil the functional genes responsible for albino phenotypes in chimeric plants, we inspected the complete plastid genomes (plastomes) in green and albino leaf tissues from 23 ornamental chimeric plants belonging to 20 species, including monocots, dicots, and gymnosperms. In nine chimeric plants, plastomes were identical between green and albino tissues. Meanwhile, another 14 chimeric plants were heteroplasmic, showing a mutation between green and albino tissues. We identified 14 different point mutations in eight functional plastid genes related to plastid-encoded RNA polymerase (rpo) or photosystems which caused albinism in the chimeric plants. Among them, 12 were deleterious mutations in the target genes, in which early termination appeared due to small deletion-mediated frameshift or single nucleotide substitution. Another was single nucleotide substitution in an intron of the ycf3 and the other was a missense mutation in coding region of the rpoC2 gene. We inspected chlorophyll structure, protein functional model of the rpoC2, and expression levels of the related genes in green and albino tissues of Reynoutria japonica. A single amino acid change, histidine-to-proline substitution, in the rpoC2 protein may destabilize the peripheral helix of plastid-encoded RNA polymerase, impairing the biosynthesis of the photosynthesis system in the albino tissue of R. japonica chimera plant.

5.
Food Sci Biotechnol ; 31(4): 423-431, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35464241

RESUMO

Wheat (Triticum aestivum) has diverse uses in the food industry, and different cultivars have unique properties; therefore, it is important to select the optimal cultivar for the intended end use. Here, to establish an identification system for Korean wheat cultivars, we obtained the complete plastome sequences of seven major Korean cultivars. Additionally, the open access database CerealsDB was queried to discover single-copy genomic single-nucleotide polymorphisms (SNPs) in the hexaploid wheat genome. Ten SNPs were developed into allele-specific PCR (ASP) markers, and eight of the SNPs used for ASP markers were converted into TaqMan high-throughput genotyping markers. Phylogenetic analysis using SNP genotypes revealed the genetic diversity and relationships among 137 wheat lines from around the world, including 35 Korean cultivars. This research thus presents a high-throughput authentication system for Korean wheat cultivars that may promote food industry uses of Korean wheat. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-022-01043-w.

6.
J Nanosci Nanotechnol ; 16(2): 1553-7, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27433620

RESUMO

Three natural dyes, i.e., yellow, red, and blue, were extracted from gardenia and used as sensitizers in the assembly of rainbow dye-sensitized solar cells (DSSCs) to harvest light over a wide range of wavelengths. The adsorption characteristics, photovoltaic efficiencies, and electrochemical properties of the rainbow DSSCs were investigated. Adsorption kinetic data for the dyes were obtained in a small adsorption, chamber. The data fitted a pseudo-second-order model. The photovoltaic performance of a photo-electrode with an adsorbed mixture of the three dyes was evaluated from current-voltage measurements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA