Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Front Neurosci ; 18: 1346607, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500488

RESUMO

Introduction: Brain-computer interfaces (BCIs) based on functional electrical stimulation have been used for upper extremity motor rehabilitation after stroke. However, little is known about their efficacy for multiple BCI treatments. In this study, 19 stroke patients participated in 25 upper extremity followed by 25 lower extremity BCI training sessions. Methods: Patients' functional state was assessed using two sets of clinical scales for the two BCI treatments. The Upper Extremity Fugl-Meyer Assessment (FMA-UE) and the 10-Meter Walk Test (10MWT) were the primary outcome measures for the upper and lower extremity BCI treatments, respectively. Results: Patients' motor function as assessed by the FMA-UE improved by an average of 4.2 points (p < 0.001) following upper extremity BCI treatment. In addition, improvements in activities of daily living and clinically relevant improvements in hand and finger spasticity were observed. Patients showed further improvements after the lower extremity BCI treatment, with walking speed as measured by the 10MWT increasing by 0.15 m/s (p = 0.001), reflecting a substantial meaningful change. Furthermore, a clinically relevant improvement in ankle spasticity and balance and mobility were observed. Discussion: The results of the current study provide evidence that both upper and lower extremity BCI treatments, as well as their combination, are effective in facilitating functional improvements after stroke. In addition, and most importantly improvements did not stop after the first 25 upper extremity BCI sessions.

2.
Int J Neural Syst ; 34(2): 2350068, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38073546

RESUMO

In this study, a few-shot transfer learning approach was introduced to decode movement intention from electroencephalographic (EEG) signals, allowing to recognize new tasks with minimal adaptation. To this end, a dataset of EEG signals recorded during the preparation of complex sub-movements was created from a publicly available data collection. The dataset was divided into two parts: the source domain dataset (including 5 classes) and the support (target domain) dataset, (including 2 classes) with no overlap between the two datasets in terms of classes. The proposed methodology consists in projecting EEG signals into the space-frequency-time domain, in processing such projections (rearranged in channels × frequency frames) by means of a custom EEG-based deep neural network (denoted as EEGframeNET5), and then adapting the system to recognize new tasks through a few-shot transfer learning approach. The proposed method achieved an average accuracy of 72.45 ± 4.19% in the 5-way classification of samples from the source domain dataset, outperforming comparable studies in the literature. In the second phase of the study, a few-shot transfer learning approach was proposed to adapt the neural system and make it able to recognize new tasks in the support dataset. The results demonstrated the system's ability to adapt and recognize new tasks with an average accuracy of 80 ± 0.12% in discriminating hand opening/closing preparation and outperforming reported results in the literature. This study suggests the effectiveness of EEG in capturing information related to the motor preparation of complex movements, potentially paving the way for BCI systems based on motion planning decoding. The proposed methodology could be straightforwardly extended to advanced EEG signal processing in other scenarios, such as motor imagery or neural disorder classification.


Assuntos
Interfaces Cérebro-Computador , Intenção , Eletroencefalografia/métodos , Redes Neurais de Computação , Aprendizado de Máquina , Imaginação , Algoritmos
3.
Front Neurosci ; 17: 1256077, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37920297

RESUMO

The use of Brain-Computer Interfaces (BCI) as rehabilitation tools for chronically ill neurological patients has become more widespread. BCIs combined with other techniques allow the user to restore neurological function by inducing neuroplasticity through real-time detection of motor-imagery (MI) as patients perform therapy tasks. Twenty-five stroke patients with gait disability were recruited for this study. Participants performed 25 sessions with the MI-BCI and assessment visits to track functional changes during the therapy. The results of this study demonstrated a clinically significant increase in walking speed of 0.19 m/s, 95%CI [0.13-0.25], p < 0.001. Patients also reduced spasticity and improved their range of motion and muscle contraction. The BCI treatment was effective in promoting long-lasting functional improvements in the gait speed of chronic stroke survivors. Patients have more movements in the lower limb; therefore, they can walk better and safer. This functional improvement can be explained by improved neuroplasticity in the central nervous system.

4.
Front Syst Neurosci ; 17: 1045396, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025164

RESUMO

Introduction: Like alpha rhythm, the somatosensory mu rhythm is suppressed in the presence of somatosensory inputs by implying cortical excitation. Sensorimotor rhythm (SMR) can be classified into two oscillatory frequency components: mu rhythm (8-13 Hz) and beta rhythm (14-25 Hz). The suppressed/enhanced SMR is a neural correlate of cortical activation related to efferent and afferent movement information. Therefore, it would be necessary to understand cortical information processing in diverse movement situations for clinical applications. Methods: In this work, the EEG of 10 healthy volunteers was recorded while fingers were moved passively under different kinetic and kinematic conditions for proprioceptive stimulation. For the kinetics aspect, afferent brain activity (no simultaneous volition) was compared under two conditions of finger extension: (1) generated by an orthosis and (2) generated by the orthosis simultaneously combined and assisted with functional electrical stimulation (FES) applied at the forearm muscles related to finger extension. For the kinematic aspect, the finger extension was divided into two phases: (1) dynamic extension and (2) static extension (holding the extended position). Results: In the kinematic aspect, both mu and beta rhythms were more suppressed during a dynamic than a static condition. However, only the mu rhythm showed a significant difference between kinetic conditions (with and without FES) affected by attention to proprioception after transitioning from dynamic to static state, but the beta rhythm was not. Discussion: Our results indicate that mu rhythm was influenced considerably by muscle kinetics during finger movement produced by external devices, which has relevant implications for the design of neuromodulation and neurorehabilitation interventions.

6.
Front Neurosci ; 14: 591435, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192277

RESUMO

INTRODUCTION: Numerous recent publications have explored Brain Computer Interfaces (BCI) systems as rehabilitation tools to help subacute and chronic stroke patients recover upper extremity movement. Recent work has shown that BCI therapy can lead to better outcomes than conventional therapy. BCI combined with other techniques such as Functional Electrical Stimulation (FES) and Virtual Reality (VR) allows to the user restore the neurological function by inducing the neural plasticity through improved real-time detection of motor imagery (MI) as patients perform therapy tasks. METHODS: Fifty-one stroke patients with upper extremity hemiparesis were recruited for this study. All participants performed 25 sessions with the MI BCI and assessment visits to track the functional changes before and after the therapy. RESULTS: The results of this study demonstrated a significant increase in the motor function of the paretic arm assessed by Fugl-Meyer Assessment (FMA-UE), ΔFMA-UE = 4.68 points, P < 0.001, reduction of the spasticity in the wrist and fingers assessed by Modified Ashworth Scale (MAS), ΔMAS-wrist = -0.72 points (SD = 0.83), P < 0.001, ΔMAS-fingers = -0.63 points (SD = 0.82), P < 0.001. Other significant improvements in the grasp ability were detected in the healthy hand. All these functional improvements achieved during the BCI therapy persisted 6 months after the therapy ended. Results also showed that patients with Motor Imagery accuracy (MI) above 80% increase 3.16 points more in the FMA than patients below this threshold (95% CI; [1.47-6.62], P = 0.003). The functional improvement was not related with the stroke severity or with the stroke stage. CONCLUSION: The BCI treatment used here was effective in promoting long lasting functional improvements in the upper extremity in stroke survivors with severe, moderate and mild impairment. This functional improvement can be explained by improved neuroplasticity in the central nervous system.

7.
Front Neurosci ; 14: 582, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733182

RESUMO

INTRODUCTION: Recent studies explored promising new quantitative methods to analyze electroencephalography (EEG) signals. This paper analyzes the correlation of two EEG parameters, Brain Symmetry Index (BSI) and Laterality Coefficient (LC), with established functional scales for the stroke assessment. METHODS: Thirty-two healthy subjects and thirty-six stroke patients with upper extremity hemiparesis were recruited for this study. The stroke patients where subdivided in three groups according to the stroke location: Cortical, Subcortical, and Cortical + Subcortical. The participants performed assessment visits to record the EEG in the resting state and perform functional tests using rehabilitation scales. Then, stroke patients performed 25 sessions using a motor-imagery based Brain Computer Interface system (BCI). BSI was calculated with the EEG data in resting state and LC was calculated with the Event-Related Synchronization maps. RESULTS: The results of this study demonstrated significant differences in the BSI between the healthy group and Subcortical group (P = 0.001), and also between the healthy and Cortical+Subcortical group (P = 0.019). No significant differences were found between the healthy group and the Cortical group (P = 0.505). Furthermore, the BSI analysis in the healthy group based on gender showed statistical differences (P = 0.027). In the stroke group, the correlation between the BSI and the functional state of the upper extremity assessed by Fugl-Meyer Assessment (FMA) was also significant, ρ = -0.430 and P = 0.046. The correlation between the BSI and the FMA-Lower extremity was not significant (ρ = -0.063, P = 0.852). Similarly, the LC calculated in the alpha band has significative correlation with FMA of upper extremity (ρ = -0.623 and P < 0.001) and FMA of lower extremity (ρ = -0.509 and P = 0.026). Other important significant correlations between LC and functional scales were observed. In addition, the patients showed an improvement in the FMA-upper extremity after the BCI therapy (ΔFMA = 1 median [IQR: 0-8], P = 0.002). CONCLUSION: The quantitative EEG tools used here may help support our understanding of stroke and how the brain changes during rehabilitation therapy. These tools can help identify changes in EEG biomarkers and parameters during therapy that might lead to improved therapy methods and functional prognoses.

8.
Neurorehabil Neural Repair ; 33(3): 188-198, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30722727

RESUMO

BACKGROUND: Brain-machine interfaces (BMIs) have been recently proposed as a new tool to induce functional recovery in stroke patients. OBJECTIVE: Here we evaluated long-term effects of BMI training and physiotherapy in motor function of severely paralyzed chronic stroke patients 6 months after intervention. METHODS: A total of 30 chronic stroke patients with severe hand paresis from our previous study were invited, and 28 underwent follow-up assessments. BMI training included voluntary desynchronization of ipsilesional EEG-sensorimotor rhythms triggering paretic upper-limb movements via robotic orthoses (experimental group, n = 16) or random orthoses movements (sham group, n = 12). Both groups received identical physiotherapy following BMI sessions and a home-based training program after intervention. Upper-limb motor assessment scores, electromyography (EMG), and functional magnetic resonance imaging (fMRI) were assessed before (Pre), immediately after (Post1), and 6 months after intervention (Post2). RESULTS: The experimental group presented with upper-limb Fugl-Meyer assessment (cFMA) scores significantly higher in Post2 (13.44 ± 1.96) as compared with the Pre session (11.16 ± 1.73; P = .015) and no significant changes between Post1 and Post2 sessions. The Sham group showed no significant changes on cFMA scores. Ashworth scores and EMG activity in both groups increased from Post1 to Post2. Moreover, fMRI-BOLD laterality index showed no significant difference from Pre or Post1 to Post2 sessions. CONCLUSIONS: BMI-based rehabilitation promotes long-lasting improvements in motor function of chronic stroke patients with severe paresis and represents a promising strategy in severe stroke neurorehabilitation.


Assuntos
Interfaces Cérebro-Computador , Reabilitação do Acidente Vascular Cerebral/métodos , Acidente Vascular Cerebral/fisiopatologia , Doença Crônica/reabilitação , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/diagnóstico , Resultado do Tratamento
9.
Front Neurosci ; 12: 423, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30008659

RESUMO

Persons diagnosed with disorders of consciousness (DOC) typically suffer from motor disablities, and thus assessing their spared cognitive abilities can be difficult. Recent research from several groups has shown that non-invasive brain-computer interface (BCI) technology can provide assessments of these patients' cognitive function that can supplement information provided through conventional behavioral assessment methods. In rare cases, BCIs may provide a binary communication mechanism. Here, we present results from a vibrotactile BCI assessment aiming at detecting command-following and communication in 12 unresponsive wakefulness syndrome (UWS) patients. Two different paradigms were administered at least once for every patient: (i) VT2 with two vibro-tactile stimulators fixed on the patient's left and right wrists and (ii) VT3 with three vibro-tactile stimulators fixed on both wrists and on the back. The patients were instructed to mentally count either the stimuli on the left or right wrist, which may elicit a robust P300 for the target wrist only. The EEG data from -100 to +600 ms around each stimulus were extracted and sub-divided into 8 data segments. This data was classified with linear discriminant analysis (using a 10 × 10 cross validation) and used to calibrate a BCI to assess command following and YES/NO communication abilities. The grand average VT2 accuracy across all patients was 38.3%, and the VT3 accuracy was 26.3%. Two patients achieved VT3 accuracy ≥80% and went through communication testing. One of these patients answered 4 out of 5 questions correctly in session 1, whereas the other patient answered 6/10 and 7/10 questions correctly in sessions 2 and 4. In 6 other patients, the VT2 or VT3 accuracy was above the significance threshold of 23% for at least one run, while in 4 patients, the accuracy was always below this threshold. The study highlights the importance of repeating EEG assessments to increase the chance of detecting command-following in patients with severe brain injury. Furthermore, the study shows that BCI technology can test command following in chronic UWS patients and can allow some of these patients to answer YES/NO questions.

10.
Front Neurosci ; 12: 370, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29910708

RESUMO

Detection and interpretation of signs of "covert command following" in patients with disorders of consciousness (DOC) remains a challenge for clinicians. In this study, we used a tactile P3-based BCI in 12 patients without behavioral command following, attempting to establish "covert command following." These results were then confronted to cerebral metabolism preservation as measured with glucose PET (FDG-PET). One patient showed "covert command following" (i.e., above-threshold BCI performance) during the active tactile paradigm. This patient also showed a higher cerebral glucose metabolism within the language network (presumably required for command following) when compared with the other patients without "covert command-following" but having a cerebral glucose metabolism indicative of minimally conscious state. Our results suggest that the P3-based BCI might probe "covert command following" in patients without behavioral response to command and therefore could be a valuable addition in the clinical assessment of patients with DOC.

11.
Artif Organs ; 41(11): E178-E184, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29148137

RESUMO

Conventional therapies do not provide paralyzed patients with closed-loop sensorimotor integration for motor rehabilitation. This work presents the recoveriX system, a hardware and software platform that combines a motor imagery (MI)-based brain-computer interface (BCI), functional electrical stimulation (FES), and visual feedback technologies for a complete sensorimotor closed-loop therapy system for poststroke rehabilitation. The proposed system was tested on two chronic stroke patients in a clinical environment. The patients were instructed to imagine the movement of either the left or right hand in random order. During these two MI tasks, two types of feedback were provided: a bar extending to the left or right side of a monitor as visual feedback and passive hand opening stimulated from FES as proprioceptive feedback. Both types of feedback relied on the BCI classification result achieved using common spatial patterns and a linear discriminant analysis classifier. After 10 sessions of recoveriX training, one patient partially regained control of wrist extension in her paretic wrist and the other patient increased the range of middle finger movement by 1 cm. A controlled group study is planned with a new version of the recoveriX system, which will have several improvements.


Assuntos
Interfaces Cérebro-Computador , Encéfalo/fisiopatologia , Terapia por Estimulação Elétrica/instrumentação , Retroalimentação Sensorial , Mãos/inervação , Atividade Motora , Paralisia/reabilitação , Reabilitação do Acidente Vascular Cerebral/instrumentação , Acidente Vascular Cerebral/terapia , Adulto , Fenômenos Biomecânicos , Ondas Encefálicas , Doença Crônica , Análise Discriminante , Terapia por Estimulação Elétrica/métodos , Eletroencefalografia , Desenho de Equipamento , Feminino , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Paralisia/diagnóstico , Paralisia/fisiopatologia , Reconhecimento Automatizado de Padrão , Recuperação de Função Fisiológica , Processamento de Sinais Assistido por Computador , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/fisiopatologia , Reabilitação do Acidente Vascular Cerebral/métodos , Fatores de Tempo , Resultado do Tratamento
12.
Front Neurosci ; 11: 251, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28529473

RESUMO

Many patients with locked-in syndrome (LIS) or complete locked-in syndrome (CLIS) also need brain-computer interface (BCI) platforms that do not rely on visual stimuli and are easy to use. We investigate command following and communication functions of mindBEAGLE with 9 LIS, 3 CLIS patients and three healthy controls. This tests were done with vibro-tactile stimulation with 2 or 3 stimulators (VT2 and VT3 mode) and with motor imagery (MI) paradigms. In VT2 the stimulators are fixed on the left and right wrist and the participant has the task to count the stimuli on the target hand in order to elicit a P300 response. In VT3 mode an additional stimulator is placed as a distractor on the shoulder and the participant is counting stimuli either on the right or left hand. In motor imagery mode the participant is instructed to imagine left or right hand movement. VT3 and MI also allow the participant to answer yes and no questions. Healthy controls achieved a mean assessment accuracy of 100% in VT2, 93% in VT3, and 73% in MI modes. They were able to communicate with VT3 (86.7%) and MI (83.3%) after 2 training runs. The patients achieved a mean accuracy of 76.6% in VT2, 63.1% in VT3, and 58.2% in MI modes after 1-2 training runs. 9 out of 12 LIS patients could communicate by using the vibro-tactile P300 paradigms (answered on average 8 out of 10 questions correctly) and 3 out of 12 could communicate with the motor imagery paradigm (answered correctly 4,7 out of 5 questions). 2 out of the 3 CLIS patients could use the system to communicate with VT3 (90 and 70% accuracy). The results show that paradigms based on non-visual evoked potentials and motor imagery can be effective for these users. It is also the first study that showed EEG-based BCI communication with CLIS patients and was able to bring 9 out of 12 patients to communicate with higher accuracies than reported before. More importantly this was achieved within less than 15-20 min.

13.
Eur J Transl Myol ; 26(3): 6132, 2016 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-27990240

RESUMO

Conventional therapies do not provide paralyzed patients with closed-loop sensorimotor integration for motor rehabilitation. Paired associative stimulation (PAS) uses brain-computer interface (BCI) technology to monitor patients' movement imagery in real-time, and utilizes the information to control functional electrical stimulation (FES) and bar feedback for complete sensorimotor closed loop. To realize this approach, we introduce the recoveriX system, a hardware and software platform for PAS. After 10 sessions of recoveriX training, one stroke patient partially regained control of dorsiflexion in her paretic wrist. A controlled group study is planned with a new version of the recoveriX system, which will use a new FES system and an avatar instead of bar feedback.

14.
PLoS One ; 10(10): e0140161, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26495971

RESUMO

BACKGROUND: Abnormal upper arm-forearm muscle synergies after stroke are poorly understood. We investigated whether upper arm function primes paralyzed forearm muscles in chronic stroke patients after Brain-Machine Interface (BMI)-based rehabilitation. Shaping upper arm-forearm muscle synergies may support individualized motor rehabilitation strategies. METHODS: Thirty-two chronic stroke patients with no active finger extensions were randomly assigned to experimental or sham groups and underwent daily BMI training followed by physiotherapy during four weeks. BMI sessions included desynchronization of ipsilesional brain activity and a robotic orthosis to move the paretic limb (experimental group, n = 16). In the sham group (n = 16) orthosis movements were random. Motor function was evaluated with electromyography (EMG) of forearm extensors, and upper arm and hand Fugl-Meyer assessment (FMA) scores. Patients performed distinct upper arm (e.g., shoulder flexion) and hand movements (finger extensions). Forearm EMG activity significantly higher during upper arm movements as compared to finger extensions was considered facilitation of forearm EMG activity. Intraclass correlation coefficient (ICC) was used to test inter-session reliability of facilitation of forearm EMG activity. RESULTS: Facilitation of forearm EMG activity ICC ranges from 0.52 to 0.83, indicating fair to high reliability before intervention in both limbs. Facilitation of forearm muscles is higher in the paretic as compared to the healthy limb (p<0.001). Upper arm FMA scores predict facilitation of forearm muscles after intervention in both groups (significant correlations ranged from R = 0.752, p = 0.002 to R = 0.779, p = 0.001), but only in the experimental group upper arm FMA scores predict changes in facilitation of forearm muscles after intervention (R = 0.709, p = 0.002; R = 0.827, p<0.001). CONCLUSIONS: Residual upper arm motor function primes recruitment of paralyzed forearm muscles in chronic stroke patients and predicts changes in their recruitment after BMI training. This study suggests that changes in upper arm-forearm synergies contribute to stroke motor recovery, and provides candidacy guidelines for similar BMI-based clinical practice.


Assuntos
Braço/fisiopatologia , Antebraço/fisiopatologia , Músculo Esquelético/fisiopatologia , Paresia/reabilitação , Modalidades de Fisioterapia , Reabilitação do Acidente Vascular Cerebral , Adulto , Idoso , Interfaces Cérebro-Computador , Doença Crônica , Eletromiografia , Feminino , Antebraço/inervação , Mãos/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Movimento , Músculo Esquelético/inervação , Paresia/fisiopatologia , Ombro/fisiopatologia , Acidente Vascular Cerebral/fisiopatologia , Resultado do Tratamento
15.
Ann Clin Transl Neurol ; 2(1): 1-11, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25642429

RESUMO

OBJECTIVE: Stroke is a leading cause of long-term motor disability. Stroke patients with severe hand weakness do not profit from rehabilitative treatments. Recently, brain-controlled robotics and sequential functional electrical stimulation allowed some improvement. However, for such therapies to succeed, it is required to decode patients' intentions for different arm movements. Here, we evaluated whether residual muscle activity could be used to predict movements from paralyzed joints in severely impaired chronic stroke patients. METHODS: Muscle activity was recorded with surface-electromyography (EMG) in 41 patients, with severe hand weakness (Fugl-Meyer Assessment [FMA] hand subscores of 2.93 ± 2.7), in order to decode their intention to perform six different motions of the affected arm, required for voluntary muscle activity and to control neuroprostheses. Decoding of paretic and nonparetic muscle activity was performed using a feed-forward neural network classifier. The contribution of each muscle to the intended movement was determined. RESULTS: Decoding of up to six arm movements was accurate (>65%) in more than 97% of nonparetic and 46% of paretic muscles. INTERPRETATION: These results demonstrate that some level of neuronal innervation to the paretic muscle remains preserved and can be used to implement neurorehabilitative treatments in 46% of patients with severe paralysis and extensive cortical and/or subcortical lesions. Such decoding may allow these patients for the first time after stroke to control different motions of arm prostheses through muscle-triggered rehabilitative treatments.

16.
Ann Neurol ; 74(1): 100-8, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23494615

RESUMO

OBJECTIVE: Chronic stroke patients with severe hand weakness respond poorly to rehabilitation efforts. Here, we evaluated efficacy of daily brain-machine interface (BMI) training to increase the hypothesized beneficial effects of physiotherapy alone in patients with severe paresis in a double-blind sham-controlled design proof of concept study. METHODS: Thirty-two chronic stroke patients with severe hand weakness were randomly assigned to 2 matched groups and participated in 17.8 ± 1.4 days of training rewarding desynchronization of ipsilesional oscillatory sensorimotor rhythms with contingent online movements of hand and arm orthoses (experimental group, n = 16). In the control group (sham group, n = 16), movements of the orthoses occurred randomly. Both groups received identical behavioral physiotherapy immediately following BMI training or the control intervention. Upper limb motor function scores, electromyography from arm and hand muscles, placebo-expectancy effects, and functional magnetic resonance imaging (fMRI) blood oxygenation level-dependent activity were assessed before and after intervention. RESULTS: A significant group × time interaction in upper limb (combined hand and modified arm) Fugl-Meyer assessment (cFMA) motor scores was found. cFMA scores improved more in the experimental than in the control group, presenting a significant improvement of cFMA scores (3.41 ± 0.563-point difference, p = 0.018) reflecting a clinically meaningful change from no activity to some in paretic muscles. cFMA improvements in the experimental group correlated with changes in fMRI laterality index and with paretic hand electromyography activity. Placebo-expectancy scores were comparable for both groups. INTERPRETATION: The addition of BMI training to behaviorally oriented physiotherapy can be used to induce functional improvements in motor function in chronic stroke patients without residual finger movements and may open a new door in stroke neurorehabilitation.


Assuntos
Interfaces Cérebro-Computador , Encéfalo/fisiologia , Modalidades de Fisioterapia/instrumentação , Reabilitação do Acidente Vascular Cerebral , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Análise de Variância , Braço/fisiologia , Encéfalo/irrigação sanguínea , Encéfalo/fisiopatologia , Ondas Encefálicas , Estudos de Casos e Controles , Doença Crônica , Eletroencefalografia , Eletromiografia , Feminino , Mãos/fisiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Atividade Motora/fisiologia , Avaliação de Resultados em Cuidados de Saúde , Estudos Retrospectivos , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/fisiopatologia , Adulto Jovem
17.
Artigo em Inglês | MEDLINE | ID: mdl-23366984

RESUMO

A brain-computer interface (BCI) based on near-infrared spectroscopy (NIRS) could act as a tool for rehabilitation of stroke patients due to the neural activity induced by motor imagery aided by real-time feedback of hemodynamic activation. When combined with functional electrical stimulation (FES) of the affected limb, BCI is expected to have an even greater benefit due to the contingency established between motor imagery and afferent, haptic feedback from stimulation. Yet, few studies have explored such an approach, presumably due to the difficulty in dissociating and thus decoding the hemodynamic response (HDR) between motor imagery and peripheral stimulation. Here, for the first time, we demonstrate that NIRS signals elicited by motor imagery can be reliably discriminated from those due to FES, by first performing a univariate analysis of the NIRS signals, and subsequently by multivariate pattern classification. Our results showing that robust classification of motor imagery from the rest condition is possible support previous findings that imagery could be used to drive a BCI based on NIRS. More importantly, we demonstrate for the first time the successful classification of motor imagery and FES, indicating that it is technically feasible to implement a contingent NIRS-BCI with FES.


Assuntos
Circulação Cerebrovascular/fisiologia , Estimulação Elétrica/métodos , Imaginação/fisiologia , Córtex Motor/fisiologia , Movimento/fisiologia , Consumo de Oxigênio/fisiologia , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Feminino , Humanos , Masculino , Adulto Jovem
18.
Artigo em Inglês | MEDLINE | ID: mdl-22255989

RESUMO

Stimulation artifacts are short-duration, high-amplitude spikes which can be observed in electroencephalogram (EEG) recordings whenever surface functional electrical stimulation (FES) is applied during recordings. Stimulation artifacts are of non-physiologic origin and hence have to be removed before analysis of the EEG can take place. In this paper, algorithms for the detection and removal of stimulation artifacts are presented. The algorithms require only little computational resources and can be applied online, while signals are recorded. Therefore, the algorithms are suitable for applications such as online control of FES based neuroprostheses by a brain-computer interface. Tests are performed with datasets recorded from two subjects for artifact durations ranging from 0.5 ms to 10 ms. After application of the artifact removal algorithms the signal-to-noise ratio of the reconstructed signals ranges from 15 dB to 45 dB, depending on the duration of artifacts and the type of algorithm.


Assuntos
Eletroencefalografia/métodos , Processamento de Sinais Assistido por Computador , Adulto , Algoritmos , Artefatos , Simulação por Computador , Eletrodos , Feminino , Humanos , Masculino , Modelos Neurológicos , Distribuição Normal , Probabilidade , Razão Sinal-Ruído , Fatores de Tempo
19.
Artigo em Inglês | MEDLINE | ID: mdl-22256027

RESUMO

Stroke is a cardiovascular accident within the brain resulting in motor and sensory impairment in most of the survivors. A stroke can produce complete paralysis of the limb although sensory abilities are normally preserved. Functional electrical stimulation (FES), robotics and brain computer interfaces (BCIs) have been used to induce motor rehabilitation. In this work we measured the brain activity of healthy volunteers using electroencephalography (EEG) during FES, passive movements, active movements, motor imagery of the hand and resting to compare afferent and efferent brain signals produced during these motor related activities and to define possible features for an online FES-BCI. In the conditions in which the hand was moved we limited the movement range in order to control the afferent flow. Although we observed that there is a subject dependent frequency and spatial distribution of efferent and afferent signals, common patterns between conditions and subjects were present mainly in the low beta frequency range. When averaging all the subjects together the most significant frequency bin comparing each condition versus rest was exactly the same for all conditions but motor imagery. These results suggest that to implement an on-line FES-BCI, afferent brain signals resulting from FES have to be filtered and time-frequency-spatial features need to be used.


Assuntos
Encéfalo/patologia , Neurônios Aferentes/fisiologia , Neurônios Eferentes/fisiologia , Processamento de Sinais Assistido por Computador , Reabilitação do Acidente Vascular Cerebral , Algoritmos , Computadores , Eletroencefalografia/métodos , Humanos , Sistemas Homem-Máquina , Destreza Motora/fisiologia , Movimento/fisiologia , Robótica , Software , Acidente Vascular Cerebral/fisiopatologia , Fatores de Tempo , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA