Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Toxins (Basel) ; 16(2)2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38393181

RESUMO

Patulin is a secondary metabolite primarily synthesized by the fungus Penicillium expansum, which is responsible for blue mold disease on apples. The latter are highly susceptible to fungal infection in the postharvest stages. Apples destined to produce compotes are processed throughout the year, which implies that long periods of storage are required under controlled atmospheres. P. expansum is capable of infecting apples throughout the whole process, and patulin can be detected in the end-product. In the present study, 455 apples (organically and conventionally grown), destined to produce compotes, of the variety "Golden Delicious" were sampled at multiple postharvest steps. The apple samples were analyzed for their patulin content and P. expansum was quantified using real-time PCR. The patulin results showed no significant differences between the two cultivation techniques; however, two critical control points were identified: the long-term storage and the deck storage of apples at ambient temperature before transport. Additionally, alterations in the epiphytic microbiota of both fungi and bacteria throughout various steps were investigated through the application of a metabarcoding approach. The alpha and beta diversity analysis highlighted the effect of long-term storage, causing an increase in the bacterial and fungal diversity on apples, and showed significant differences in the microbial communities during the different postharvest steps. The different network analyses demonstrated intra-species relationships. Multiple pairs of fungal and bacterial competitive relationships were observed. Positive interactions were also observed between P. expansum and multiple fungal and bacterial species. These network analyses provide a basis for further fungal and bacterial interaction analyses for fruit disease biocontrol.


Assuntos
Malus , Patulina , Penicillium , Malus/microbiologia , Patulina/análise , Frutas/microbiologia , Penicillium/metabolismo
2.
Nat Commun ; 13(1): 1524, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35314704

RESUMO

Plant nucleotide-binding and leucine-rich repeat domain proteins (NLRs) are immune sensors that recognize pathogen effectors. Here, we show that molecular engineering of the integrated decoy domain (ID) of an NLR can extend its recognition spectrum to a new effector. We relied for this on detailed knowledge on the recognition of the Magnaporthe oryzae effectors AVR-PikD, AVR-Pia, and AVR1-CO39 by, respectively, the rice NLRs Pikp-1 and RGA5. Both receptors detect their effectors through physical binding to their HMA (Heavy Metal-Associated) IDs. By introducing into RGA5_HMA the AVR-PikD binding residues of Pikp-1_HMA, we create a high-affinity binding surface for this effector. RGA5 variants carrying this engineered binding surface perceive the new ligand, AVR-PikD, and still recognize AVR-Pia and AVR1-CO39 in the model plant N. benthamiana. However, they do not confer extended disease resistance specificity against M. oryzae in transgenic rice plants. Altogether, our study provides a proof of concept for the design of new effector recognition specificities in NLRs through molecular engineering of IDs.


Assuntos
Magnaporthe , Oryza , Interações Hospedeiro-Patógeno , Proteínas NLR/metabolismo , Oryza/metabolismo , Doenças das Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Receptores Imunológicos/metabolismo
3.
Mol Plant Pathol ; 22(12): 1688-1696, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34427040

RESUMO

Assessing immune responses and cell death in Nicotiana benthamiana leaf agro-infiltration assays is a powerful and widely used experimental approach in molecular plant pathology. Here, we describe a reliable high-throughput protocol to quantify strong, macroscopically visible cell death responses in N. benthamiana agro-infiltration assays. The method relies on measuring the reduction of leaf autofluorescence in the red spectrum upon cell death induction and provides quantitative data suitable for straightforward statistical analysis. Two different well-established model nucleotide-binding and leucine-rich repeat domain proteins (NLRs) were used to ensure the genericity of the approach. Its accuracy and versatility were compared to visual scoring of the cell death response and standard methods commonly used to characterize NLR activities in N. benthamiana. A discussion of the advantages and limitations of our method compared to other protocols demonstrates its robustness and versatility and provides an effective means to select the best-suited protocol for a defined experiment.


Assuntos
Nicotiana , Folhas de Planta , Morte Celular , Imagem Óptica
4.
J Fungi (Basel) ; 7(4)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33805022

RESUMO

Patulin is a secondary metabolite produced primarily by the fungus Penicillium expansum, responsible for the blue mold disease on apples. It is found in apple products including apple cider when apple juice is added after fermentation. In the present study, two hundred and twenty-five cider-apples of the variety "Bedan", cultivated in Brittany in France, were sampled from the orchard during harvesting until the storage step, right before processing. The patulin analysis on these samples reported a low contamination at the orchard and a significantly higher-level of contamination in the cider-apples starting from the transporting bin. The percentage of positive samples increased from 6% to 47% after 12 h in the harvesting bin before transporting and reached 95% after 24 h of transporting, decreasing then to 69% at the end of the storage. Penicillium expansum was quantified on the surface of apples using real-time PCR and was observed to be mostly consistent between the harvest and post-harvest steps. It was detected on average, on the surface of 85% of all sampled apples with a mean value around 2.35 × 106Penicillium expansum DNA/g of apple. Moreover, the changes in the fungal and bacterial epiphytic microbiota in the different steps were studied using a metabarcoding approach. The alpha and beta diversity analysis revealed the presence of unique and more diverse bacterial and fungal communities on the surface of apples picked from the orchard compared to the rest of the sampling steps. Potential indigenous biological control agents were identified on the surface of sampled apples. Future perspective includes developing actions of prevention and control of the contamination by Penicillium expansum during the harvest and along the various critical post-harvest stages before transformation in a sustainable development concern.

5.
J Exp Bot ; 68(14): 3915-3924, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28637277

RESUMO

To support photosynthetic CO2 fixation by Rubisco, the chloroplast must be fed with inorganic carbon in the form of CO2 or bicarbonate. However, the mechanisms allowing the rapid passage of this gas and this charged molecule through the bounding membranes of the chloroplast envelope are not yet completely elucidated. We describe here a method allowing us to measure the permeability of these two molecules through the chloroplast envelope using a membrane inlet mass spectrometer and 18O-labelled inorganic carbon. We established that the internal stromal carbonic anhydrase activity is not limiting for this technique, and precisely measured the chloroplast surface area and permeability values for CO2 and bicarbonate. This was performed on chloroplasts from several plant species, with values ranging from 2.3 × 10-4 m s-1 to 8 × 10-4 m s-1 permeability for CO2 and 1 × 10-8 m s-1 for bicarbonate. We were able to apply our method to chloroplasts from an Arabidopsis aquaporin mutant, and this showed that CO2 permeability was reduced 50% in the mutant compared with the wild-type reference.


Assuntos
Bicarbonatos/metabolismo , Dióxido de Carbono/metabolismo , Permeabilidade da Membrana Celular , Cloroplastos/metabolismo , Espectrometria de Massas/métodos , Fotossíntese
6.
Plant Methods ; 13: 16, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28344635

RESUMO

BACKGROUND: Mitochondrial respiration in the dark (Rdark) is a critical plant physiological process, and hence a reliable, efficient and high-throughput method of measuring variation in rates of Rdark is essential for agronomic and ecological studies. However, currently methods used to measure Rdark in plant tissues are typically low throughput. We assessed a high-throughput automated fluorophore system of detecting multiple O2 consumption rates. The fluorophore technique was compared with O2-electrodes, infrared gas analysers (IRGA), and membrane inlet mass spectrometry, to determine accuracy and speed of detecting respiratory fluxes. RESULTS: The high-throughput fluorophore system provided stable measurements of Rdark in detached leaf and root tissues over many hours. High-throughput potential was evident in that the fluorophore system was 10 to 26-fold faster per sample measurement than other conventional methods. The versatility of the technique was evident in its enabling: (1) rapid screening of Rdark in 138 genotypes of wheat; and, (2) quantification of rarely-assessed whole-plant Rdark through dissection and simultaneous measurements of above- and below-ground organs. DISCUSSION: Variation in absolute Rdark was observed between techniques, likely due to variation in sample conditions (i.e. liquid vs. gas-phase, open vs. closed systems), indicating that comparisons between studies using different measuring apparatus may not be feasible. However, the high-throughput protocol we present provided similar values of Rdark to the most commonly used IRGA instrument currently employed by plant scientists. Together with the greater than tenfold increase in sample processing speed, we conclude that the high-throughput protocol enables reliable, stable and reproducible measurements of Rdark on multiple samples simultaneously, irrespective of plant or tissue type.

7.
Biotechnol Biofuels ; 9: 55, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26958078

RESUMO

BACKGROUND: Because of their high biomass productivity and their ability to accumulate high levels of energy-rich reserve compounds such as oils or starch, microalgae represent a promising feedstock for the production of biofuel. Accumulation of reserve compounds takes place when microalgae face adverse situations such as nutrient shortage, conditions which also provoke a stop in cell division, and down-regulation of photosynthesis. Despite growing interest in microalgal biofuels, little is known about molecular mechanisms controlling carbon reserve formation. In order to discover new regulatory mechanisms, and identify genes of interest to boost the potential of microalgae for biofuel production, we developed a forward genetic approach in the model microalga Chlamydomonas reinhardtii. RESULTS: By screening an insertional mutant library on the ability of mutants to accumulate and re-mobilize reserve compounds, we isolated a Chlamydomonas mutant (starch degradation 1, std1) deficient for a dual-specificity tyrosine-phosphorylation-regulated kinase (DYRK). The std1 mutant accumulates higher levels of starch and oil than wild-type and maintains a higher photosynthetic activity under nitrogen starvation. Phylogenetic analysis revealed that this kinase (named DYRKP) belongs to a plant-specific subgroup of the evolutionarily conserved DYRK kinase family. Furthermore, hyper-accumulation of storage compounds occurs in std1 mostly under low light in photoautotrophic condition, suggesting that the kinase normally acts under conditions of low energy status to limit reserve accumulation. CONCLUSIONS: The DYRKP kinase is proposed to act as a negative regulator of the sink capacity of photosynthetic cells that integrates nutrient and energy signals. Inactivation of the kinase strongly boosts accumulation of reserve compounds under photoautotrophic nitrogen deprivation and allows maintaining high photosynthetic activity. The DYRKP kinase therefore represents an attractive target for improving the energy density of microalgae or crop plants.

8.
Plant Physiol ; 168(3): 953-67, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25975834

RESUMO

Seedling roots enable plant establishment. Their small phenotypes are measured routinely. Adult root systems are relevant to yield and efficiency, but phenotyping is challenging. Root length exceeds the volume of most pots. Field studies measure partial adult root systems through coring or use seedling roots as adult surrogates. Here, we phenotyped 79 diverse lines of the small grass model Brachypodium distachyon to adults in 50-cm-long tubes of soil with irrigation; a subset of 16 lines was droughted. Variation was large (total biomass, ×8; total root length [TRL], ×10; and root mass ratio, ×6), repeatable, and attributable to genetic factors (heritabilities ranged from approximately 50% for root growth to 82% for partitioning phenotypes). Lines were dissected into seed-borne tissues (stem and primary seminal axile roots) and stem-borne tissues (tillers and coleoptile and leaf node axile roots) plus branch roots. All lines developed one seminal root that varied, with branch roots, from 31% to 90% of TRL in the well-watered condition. With drought, 100% of TRL was seminal, regardless of line because nodal roots were almost always inhibited in drying topsoil. Irrigation stimulated nodal roots depending on genotype. Shoot size and tillers correlated positively with roots with irrigation, but partitioning depended on genotype and was plastic with drought. Adult root systems of B. distachyon have genetic variation to exploit to increase cereal yields through genes associated with partitioning among roots and their responsiveness to irrigation. Whole-plant phenotypes could enhance gain for droughted environments because root and shoot traits are coselected.


Assuntos
Brachypodium/fisiologia , Cruzamento , Secas , Ecótipo , Raízes de Plantas/fisiologia , Caules de Planta/fisiologia , Sementes/fisiologia , Brachypodium/genética , Meio Ambiente , Geografia , Padrões de Herança/genética , Fenótipo , Filogenia , Raízes de Plantas/anatomia & histologia , Água
9.
Trends Plant Sci ; 19(7): 414-8, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24917149

RESUMO

The scientific presentations at the First International Brachypodium Conference (abstracts available at http://www.brachy2013.unimore.it) are evidence of the widespread adoption of Brachypodium distachyon as a model system. Furthermore, the wide range of topics presented (genome evolution, roots, abiotic and biotic stress, comparative genomics, natural diversity, and cell walls) demonstrates that the Brachypodium research community has achieved a critical mass of tools and has transitioned from resource development to addressing biological questions, particularly those unique to grasses.


Assuntos
Brachypodium/fisiologia , Genoma de Planta/genética , Genômica , Doenças das Plantas , Biomassa , Brachypodium/genética , Brachypodium/crescimento & desenvolvimento , Parede Celular/metabolismo , Evolução Molecular , Modelos Biológicos , Poaceae/genética , Poaceae/crescimento & desenvolvimento , Poaceae/fisiologia , Estresse Fisiológico
10.
J Integr Plant Biol ; 56(8): 781-96, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24666962

RESUMO

This work evaluates the phenotypic response of the model grass (Brachypodium distachyon (L.) P. Beauv.) to nitrogen and phosphorus nutrition using a combination of imaging techniques and destructive harvest of shoots and roots. Reference line Bd21-3 was grown in pots using 11 phosphorus and 11 nitrogen concentrations to establish a dose-response curve. Shoot biovolume and biomass, root length and biomass, and tissue phosphorus and nitrogen concentrations increased with nutrient concentration. Shoot biovolume, estimated by imaging, was highly correlated with dry weight (R(2) > 0.92) and both biovolume and growth rate responded strongly to nutrient availability. Higher nutrient supply increased nodal root length more than other root types. Photochemical efficiency was strongly reduced by low phosphorus concentrations as early as 1 week after germination, suggesting that this measurement may be suitable for high throughput screening of phosphorus response. In contrast, nitrogen concentration had little effect on photochemical efficiency. Changes in biovolume over time were used to compare growth rates of four accessions in response to nitrogen and phosphorus supply. We demonstrate that a time series image-based approach coupled with mathematical modeling provides higher resolution of genotypic response to nutrient supply than traditional destructive techniques and shows promise for high throughput screening and determination of genomic regions associated with superior nutrient use efficiency.


Assuntos
Biomassa , Brachypodium/crescimento & desenvolvimento , Processamento de Imagem Assistida por Computador , Nitrogênio/metabolismo , Fósforo/metabolismo , Brachypodium/metabolismo , Modelos Biológicos , Fenótipo , Fotossíntese , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento
11.
J Exp Bot ; 63(9): 3467-74, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22467408

RESUMO

To meet the demands of a larger and more affluent global population, wheat yields must increase faster this century than last, with less irrigation, fertilizer, and land. Modelling and experiments consistently demonstrate a large potential for increasing wheat productivity by improving root systems; however, application of research to new varieties is slow because of the inherent difficulties associated with working underground. This review makes the case for the use of the model grass Brachypodium distachyon to simplify root research and accelerate the identification of genes underlying wheat root improvement. Brachypodium is a small temperate grass with many genomic, genetic, and experimental resources that make it a tractable model plant. Brachypodium and wheat have very similar root anatomies which are distinct from rice root anatomy that is specialized to help it overcome anaerobic conditions associated with submerged roots. As a dicotyledonous plant, Arabidopsis has an even more divergent root system that features a tap root system and cambia with secondary growth, both of which are lacking in the grasses. The major advantage of Brachypodium is its small stature that allows the adult grass root system to be readily phenotyped, unlike rice and maize. This will facilitate the identification of genes in adult roots that greatly influence yield by modulating water uptake during flowering and grain development. A summary of the advantages of Brachypodium for root studies is presented, including the adult root system architecture and root growth during grain development. Routes to translate discoveries from Brachypodium to wheat are also discussed.


Assuntos
Brachypodium/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Triticum/crescimento & desenvolvimento , Triticum/genética , Agricultura , Engenharia Genética , Raízes de Plantas/anatomia & histologia , Plântula/genética , Plântula/crescimento & desenvolvimento
12.
Plant Physiol ; 151(2): 631-40, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19700559

RESUMO

Under sulfur deprivation conditions, the green alga Chlamydomonas reinhardtii produces hydrogen in the light in a sustainable manner thanks to the contribution of two pathways, direct and indirect. In the direct pathway, photosystem II (PSII) supplies electrons to hydrogenase through the photosynthetic electron transport chain, while in the indirect pathway, hydrogen is produced in the absence of PSII through a photosystem I-dependent process. Starch metabolism has been proposed to contribute to both pathways by feeding respiration and maintaining anoxia during the direct pathway and by supplying reductants to the plastoquinone pool during the indirect pathway. At variance with this scheme, we report that a mutant lacking starch (defective for sta6) produces similar hydrogen amounts as the parental strain in conditions of sulfur deprivation. However, when PSII is inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea, conditions where hydrogen is produced by the indirect pathway, hydrogen production is strongly reduced in the starch-deficient mutant. We conclude that starch breakdown contributes to the indirect pathway by feeding electrons to the plastoquinone pool but is dispensable for operation of the direct pathway that prevails in the absence of DCMU. While hydrogenase induction was strongly impaired in the starch-deficient mutant under dark anaerobic conditions, wild-type-like induction was observed in the light. Because this light-driven hydrogenase induction is DCMU insensitive and strongly inhibited by carbonyl cyanide-p-trifluoromethoxyphenylhydrazone or 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone, we conclude that this process is regulated by the proton gradient generated by cyclic electron flow around PSI.


Assuntos
Chlamydomonas/metabolismo , Hidrogênio/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Amido/metabolismo , Acetatos/metabolismo , Anaerobiose , Animais , Chlamydomonas/citologia , Chlamydomonas/enzimologia , Deutério/metabolismo , Teste de Complementação Genética , Hidrogenase/metabolismo , Espaço Intracelular/metabolismo , Mutação/genética , Enxofre/deficiência
13.
Plant J ; 48(2): 274-85, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17018036

RESUMO

Among the three distinct starch phosphorylase activities detected in Chlamydomonas reinhardtii, two distinct plastidial enzymes (PhoA and PhoB) are documented while a single extraplastidial form (PhoC) displays a higher affinity for glycogen as in vascular plants. The two plastidial phosphorylases are shown to function as homodimers containing two 91-kDa (PhoA) subunits and two 110-kDa (PhoB) subunits. Both lack the typical 80-amino-acid insertion found in the higher plant plastidial forms. PhoB is exquisitely sensitive to inhibition by ADP-glucose and has a low affinity for malto-oligosaccharides. PhoA is more similar to the higher plant plastidial phosphorylases: it is moderately sensitive to ADP-glucose inhibition and has a high affinity for unbranched malto-oligosaccharides. Molecular analysis establishes that STA4 encodes PhoB. Chlamydomonas reinhardtii strains carrying mutations at the STA4 locus display a significant decrease in amounts of starch during storage that correlates with the accumulation of abnormally shaped granules containing a modified amylopectin structure and a high amylose content. The wild-type phenotype could be rescued by reintroduction of the cloned wild-type genomic DNA, thereby demonstrating the involvement of phosphorylase in storage starch synthesis.


Assuntos
Proteínas de Algas/fisiologia , Chlamydomonas reinhardtii/enzimologia , Fosforilases/fisiologia , Amido/biossíntese , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Amilopectina/química , Amilopectina/metabolismo , Amilose/metabolismo , Animais , Chlamydomonas reinhardtii/genética , Teste de Complementação Genética , Isoenzimas/análise , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Microscopia Eletrônica de Varredura , Mutação , Nitrogênio/metabolismo , Fosforilases/genética , Fosforilases/metabolismo , Amido/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA