Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 30(28): 8509-15, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-24960524

RESUMO

Herein we show the development of biointerfaces on indium-tin oxide (ITO) surfaces prepared from organophosphonate self-assembled monolayers. The interfaces were prepared in a stepwise fabrication procedure containing a base monolayer modified with oligo(ethylene oxide) species to which biological recognition ligands were attached. The density of ligands was controlled by varying the ratio of two oligo(ethylene oxide) species such that only one is compatible with further coupling. The final biointerface on ITO was assessed using cell adhesion studies, which showed that the biointerfaces prepared on ITO performed similarly to equivalent monolayers on gold or silicon.


Assuntos
Índio/química , Organofosfonatos/química , Compostos de Estanho/química , Ouro/química , Silício/química
2.
Langmuir ; 30(1): 332-9, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24341508

RESUMO

We report the modification of carbon electrodes formed from pyrolyzed photoresist films (PPF) via plasma iodination followed by the organic monolayer modification of these surfaces. The iodinated surfaces were characterized using cyclic voltammetry, atomic force microscopy, and X-ray photoelectron spectroscopy to enable the optimization of the iodination while preserving the stability and smoothness of the carbon surface. Subsequently, the C-I surface was further modified with molecules that possess an alkene or alkyne at one end through light activation with low energy (visible range λ 514 nm). The versatility of the modification reaction of the C-I surfaces is shown by reactions with undecylenic acid, 1,8-nonadiyne, and S-undec-10-enyl-2,2,2-trifluoroethanethioate (C11-S-TFA). Modification with 1,8-nonadiyne allows further modification via "click" chemistry with azido-terminated oligo(ethylene oxide) molecules demonstrated briefly to alter the hydrophilicity of the surface after attachment of ethylene oxide moieties. Furthermore, patterning of C11-S-TFA was demonstrated using a simple photolithography technique. Deprotection of the C11-S-TFA gave a free thiol allowed patterning of gold nanoparticles on the surface as verified using scanning electron microscopy (SEM). These results demonstrate that plasma iodination to form C-I is a versatile, simple, and modular approach to functionalize the carbon surface.


Assuntos
Carbono/química , Hidrocarbonetos Fluorados/química , Iodo/química , Luz , Compostos de Sulfidrila/química , Química Click , Eletrodos , Ouro/química , Nanopartículas Metálicas/química , Propriedades de Superfície
3.
Langmuir ; 29(15): 4772-81, 2013 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-23527551

RESUMO

Supramolecular interactions between two surface modification species are explored to control the ratio and distribution of these species on the resultant surface. A binary mixture of aryl diazonium salts bearing oppositely charged para-substituents (either -SO3(-) or -N(+)(Me)3), which also reduce at different potentials, has been examined on glassy carbon surfaces using cyclic voltammetry and X-ray photoelectron spectroscopy (XPS). Striking features were observed: (1) the two aryl diazonium salts in the mixed solution undergo reductive adsorption at the same potential which is distinctively less negative than the potential required for the reduction of either of the two aryl diazonium salts alone; (2) the surface ratio of the two phenyl derivatives is consistently 1:1 regardless of the ratio of the two aryl diazonium salts in the modification solutions. Homogeneous distribution of the two oppositely charged phenyl species on the modified surface has also been suggested by XPS survey spectra. Diffusion coefficient measurements by DOSY NMR and DFT based computation have indicated the association of the two aryl diazonium species in the solution, which has led to changes in the molecular orbital energies of the two species. This study highlights the potential of using intermolecular interactions to control the assembly of multicomponent thin layers.


Assuntos
Compostos de Diazônio/química , Técnicas Eletroquímicas , Compostos de Diazônio/síntese química , Substâncias Macromoleculares/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Teoria Quântica , Sais/síntese química , Sais/química , Propriedades de Superfície
4.
Langmuir ; 27(6): 2545-52, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21314169

RESUMO

The role of indium tin oxide (ITO) surface structure and chemistry on the formation of self-assembled monolayers (SAM) derived from organophosphonic acids has been investigated. The surface hydroxide content, crystal structure, and roughness of unmodified ITO surfaces were analyzed with X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), atomic force microscopy (AFM), and contact angle measurements. Organophosphonic acid monolayer modified ITO surfaces were then characterized using electrochemistry, contact angle measurements and impedance spectroscopy. To ascertain the extent of defects, Pb was underpotentially deposited (UPD) onto the monolayer modified ITO surfaces at defect sites and regions where the monolayer was weakly bound. The extent of defects, and the location of defects, in monolayers formed on different ITO surfaces were determined from the amount of charge passed during UPD of Pb at identical conditions, followed by XPS analysis of the Pb 4f peak and imaging with scanning tunnelling microscopy (STM). The results demonstrate that the crystal structure and hydroxide ion concentration of ITO surfaces significantly influence the quality of self-assembled monolayer formation as does the surface roughness. The most well-packed stable monolayers formed only on smooth amorphous ITO substrates with homogeneous grains and high hydroxide content. Lower quality SAMs with significant defects formed on polycrystalline surfaces and the higher the roughness the more the defects. STM defect mapping revealed that the location of defects in monolayers occurred at the boundaries between grain edges on the polycrystalline surfaces. This shows that the substrate characteristics have a strong influence on the quality of monolayers formed on ITO surfaces.


Assuntos
Organofosfonatos/química , Compostos de Estanho/química , Tamanho da Partícula , Propriedades de Superfície , Compostos de Estanho/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA