Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 629(8011): 348-354, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38658760

RESUMO

Natural diamonds were (and are) formed (thousands of million years ago) in the upper mantle of Earth in metallic melts at temperatures of 900-1,400 °C and at pressures of 5-6 GPa (refs. 1,2). Diamond is thermodynamically stable under high-pressure and high-temperature conditions as per the phase diagram of carbon3. Scientists at General Electric invented and used a high-pressure and high-temperature apparatus in 1955 to synthesize diamonds by using molten iron sulfide at about 7 GPa and 1,600 °C (refs. 4-6). There is an existing model that diamond can be grown using liquid metals only at both high pressure and high temperature7. Here we describe the growth of diamond crystals and polycrystalline diamond films with no seed particles using liquid metal but at 1 atm pressure and at 1,025 °C, breaking this pattern. Diamond grew in the subsurface of liquid metal composed of gallium, iron, nickel and silicon, by catalytic activation of methane and diffusion of carbon atoms into and within the subsurface regions. We found that the supersaturation of carbon in the liquid metal subsurface leads to the nucleation and growth of diamonds, with Si playing an important part in stabilizing tetravalently bonded carbon clusters that play a part in nucleation. Growth of (metastable) diamond in liquid metal at moderate temperature and 1 atm pressure opens many possibilities for further basic science studies and for the scaling of this type of growth.

2.
ACS Nano ; 17(24): 25731-25738, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38060370

RESUMO

Transition metal dichalcogenides (TMDs) occur in the thermodynamically stable trigonal prismatic (2H) phase or the metastable octahedral (1T) phase. Phase engineering of TMDs has proven to be a powerful tool for applications in energy storage devices as well as in electrocatalysis. However, the mechanism of the phase transition in TMDs and the synthesis of phase-controlled TMDs remain challenging. Here we report the synthesis of Re-doped WS2 monolayer quantum dots (MQDs) using a simple colloidal chemical process. We find that the incorporation of a small amount of electron-rich Re atoms in WS2 changes the metal-metal distance in the 2H phase initially, which introduces strain in the structure (strained 2H (S2H) phase). Increasing the concentration of Re atoms sequentially transforms the S2H phase into the 1T and 1T' phases to release the strain. In addition, we performed controlled experiments by doping MoS2 with Re to distinguish between Re and Mo atoms in scanning transmission electron microscopy images and quantified the concentration range of Re atoms in each phase of MoS2, indicating that phase engineering of WS2 or MoS2 is possible by doping with different amounts of Re atoms. We demonstrate that the 1T' WS2 MQDs with 49 at. % Re show superior catalytic performance (a low Tafel slope of 44 mV/dec, a low overpotential of 158 mV at a current density of 10 mA/cm2, and long-term durability up to 5000 cycles) for the hydrogen evolution reaction. Our findings provide understanding and control of the phase transitions in TMDs, which will allow for the efficient manufacturing and translation of phase-engineered TMDs.

3.
Nat Commun ; 14(1): 4747, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550303

RESUMO

High-performance p-type two-dimensional (2D) transistors are fundamental for 2D nanoelectronics. However, the lack of a reliable method for creating high-quality, large-scale p-type 2D semiconductors and a suitable metallization process represents important challenges that need to be addressed for future developments of the field. Here, we report the fabrication of scalable p-type 2D single-crystalline 2H-MoTe2 transistor arrays with Fermi-level-tuned 1T'-phase semimetal contact electrodes. By transforming polycrystalline 1T'-MoTe2 to 2H polymorph via abnormal grain growth, we fabricated 4-inch 2H-MoTe2 wafers with ultra-large single-crystalline domains and spatially-controlled single-crystalline arrays at a low temperature (~500 °C). Furthermore, we demonstrate on-chip transistors by lithographic patterning and layer-by-layer integration of 1T' semimetals and 2H semiconductors. Work function modulation of 1T'-MoTe2 electrodes was achieved by depositing 3D metal (Au) pads, resulting in minimal contact resistance (~0.7 kΩ·µm) and near-zero Schottky barrier height (~14 meV) of the junction interface, and leading to high on-state current (~7.8 µA/µm) and on/off current ratio (~105) in the 2H-MoTe2 transistors.

4.
Small ; 18(24): e2202536, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35585685

RESUMO

The authors report the growth of micrometer-long single-crystal graphene ribbons (GRs) (tapered when grown above 900 °C, but uniform width when grown in the range 850 °C to 900 °C) using silica particle seeds on single crystal Cu(111) foil. Tapered graphene ribbons grow strictly along the Cu<101> direction on Cu(111) and polycrystalline copper (Cu) foils. Silica particles on both Cu foils form (semi-)molten Cu-Si-O droplets at growth temperatures, then catalyze nucleation and drive the longitudinal growth of graphene ribbons. Longitudinal growth is likely by a vapor-liquid-solid (VLS) mechanism but edge growth (above 900 °C) is due to catalytic activation of ethylene (C2 H4 ) and attachment of C atoms or species ("vapor solid" or VS growth) at the edges. It is found, based on the taper angle of the graphene ribbon, that the taper angle is determined by the growth temperature and the growth rates are independent of the particle size. The activation enthalpy (1.73 ± 0.03 eV) for longitudinal ribbon growth on Cu(111) from ethylene is lower than that for VS growth at the edges of the GRs (2.78 ± 0.15 eV) and for graphene island growth (2.85 ± 0.07 eV) that occurs concurrently.

5.
Adv Mater ; 34(15): e2110509, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35134267

RESUMO

A single-crystal graphene film grown on a Cu(111) foil by chemical vapor deposition (CVD) has ribbon-like fold structures. These graphene folds are highly oriented and essentially parallel to each other. Cu surface steps underneath the graphene are along the <110> and <211> directions, leading to the formation of the arrays of folds. The folds in the single-layer graphene (SLG) are not continuous but break up into alternating patterns. A "joint" (an AB-stacked bilayer graphene) region connects two neighboring alternating regions, and the breaks are always along zigzag or armchair directions. Folds formed in bilayer or few-layer graphene are continuous with no breaks. Molecular dynamics simulations show that SLG suffers a significantly higher compressive stress compared to bilayer graphene when both are under the same compression, thus leading to the rupture of SLG in these fold regions. The fracture strength of a CVD-grown single-crystal SLG film is simulated to be about 70 GPa. This study greatly deepens the understanding of the mechanics of CVD-grown single-crystal graphene and such folds, and sheds light on the fabrication of various graphene origami/kirigami structures by substrate engineering. Such oriented folds can be used in a variety of further studies.

6.
Nature ; 596(7873): 519-524, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34433942

RESUMO

Chemical vapour deposition of carbon-containing precursors on metal substrates is currently the most promising route for the scalable synthesis of large-area, high-quality graphene films1. However, there are usually some imperfections present in the resulting films: grain boundaries, regions with additional layers (adlayers), and wrinkles or folds, all of which can degrade the performance of graphene in various applications2-7. There have been numerous studies on ways to eliminate grain boundaries8,9 and adlayers10-12, but graphene folds have been less investigated. Here we explore the wrinkling/folding process for graphene films grown from an ethylene precursor on single-crystal Cu-Ni(111) foils. We identify a critical growth temperature (1,030 kelvin) above which folds will naturally form during the subsequent cooling process. Specifically, the compressive stress that builds up owing to thermal contraction during cooling is released by the abrupt onset of step bunching in the foil at about 1,030 kelvin, triggering the formation of graphene folds perpendicular to the step edge direction. By restricting the initial growth temperature to between 1,000 kelvin and 1,030 kelvin, we can produce large areas of single-crystal monolayer graphene films that are high-quality and fold-free. The resulting films show highly uniform transport properties: field-effect transistors prepared from these films exhibit average room-temperature carrier mobilities of around (7.0 ± 1.0) × 103 centimetres squared per volt per second for both holes and electrons. The process is also scalable, permitting simultaneous growth of graphene of the same quality on multiple foils stacked in parallel. After electrochemical transfer of the graphene films from the foils, the foils themselves can be reused essentially indefinitely for further graphene growth.

7.
Nanoscale ; 12(19): 10498-10504, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32391820

RESUMO

Herein, we report for the first time the successful preparation of thiometallate-based precursors for use in a bottom-up synthetic process of supported Pt and PtNi nanoparticle catalyst. This precursor enabled the monodisperse synthesis of supported Pt nanoparticles and the in situ formation of S, which were caught directly in a collection system by the nanoparticle synthetic processes consisting of impregnation and thermal processes. S is proven to act as a capping agent in generating highly stable nanoparticles with the size ranging from 2 nm to 3 nm and further favors the formation of monodispersed particles by solid-state digestive ripening. The proposed synthetic methodology can be applied to high-quality PtNi alloy nanoparticle systems. The current route is readily scalable, and multi-gram quantities can be prepared. The prepared carbon-supported Pt and PtNi nanoparticles were characterized as electrocatalysts for the oxygen reduction reaction and exhibited superior performance and durability to commercial Pt/C.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA