Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Life Sci ; 348: 122677, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38702026

RESUMO

AIMS: Epidemiological evidence indicates that there is a substantial association between body mass index (BMI) and at least ten forms of cancer, including melanoma, and BMI imbalance contributes to the poor survival rate of cancer patients before and after therapy. Nevertheless, few pharmacological studies on models of obesity and cancer have been reported. In this study, we administered epigallocatechin gallate (EGCG) to B16BL6 tumor-bearing mice that received a high-fat diet (HFD) to examine its impact. METHODS: B16BL6 tumor-bearing mice were fed a HFD. Body weight and food intake were documented every week. We conducted a Western blot analysis to examine the protein levels in the tumor, gastrocnemius (GAS), and tibialis anterior (TA) muscles, as well as the inguinal and epididymal white adipose tissues (iWAT and eWAT). KEY FINDINGS: EGCG has been shown to have anti-cancer effects equivalent to those of cisplatin, a chemotherapy drug. Furthermore, EGCG protected against the loss of epidydimal white adipose tissue by regulating protein levels of lipolysis factors of adipose triglyceride lipase and hormone-sensitive lipase as well as WAT browning factors of uncoupling protein 1, as opposed to cisplatin. EGCG was shown to reduce the protein levels of muscular atrophy factors of muscle RING-finger protein-1, whereas cisplatin did not contribute to rescuing the atrophy of TA and GAS muscles. CONCLUSION: Taken together, our findings indicate that EGCG has a preventive effect against cachexia symptoms and has anti-cancer effects similar to those of cisplatin in tumor-bearing mice fed a high-fat diet.


Assuntos
Catequina , Dieta Hiperlipídica , Melanoma Experimental , Camundongos Endogâmicos C57BL , Atrofia Muscular , Animais , Catequina/análogos & derivados , Catequina/farmacologia , Catequina/uso terapêutico , Dieta Hiperlipídica/efeitos adversos , Camundongos , Masculino , Atrofia Muscular/prevenção & controle , Atrofia Muscular/metabolismo , Atrofia Muscular/tratamento farmacológico , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Obesidade/metabolismo , Obesidade/tratamento farmacológico , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia
2.
Biochim Biophys Acta Mol Cell Res ; 1871(3): 119670, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38220095

RESUMO

Cancer cachexia is a type of energy-wasting syndrome characterized by fatigue, anorexia, muscle weakness, fat loss, and systemic inflammation. Baicalein, a flavonoid with bioactive properties, has demonstrated the ability to mitigate cardiac and skeletal muscle atrophy in different experimental settings. This effect is achieved through the inhibition of muscle proteolysis, suggesting its potential in preserving skeletal muscle homeostasis. In this study, we investigated the anti-cancer cachexia effects of baicalein in the regulation of muscle and fat wasting, both in vivo and in vitro. Baicalein attenuated body weight loss, including skeletal muscle and white adipose tissue (WAT), in CT26-induced cachectic mice. Moreover, baicalein increased muscle fiber thickness and suppressed the muscle-specific ubiquitin-protease system, including F-box only protein 32 and muscle RING-finger protein-1, by activating AKT phosphorylation both in vivo and in vitro. The use of LY294002, a particular inhibitor of AKT, eliminated the observed impact of baicalein on the improvement of muscle atrophy. In conclusion, baicalein inhibits muscle proteolysis and enhances AKT phosphorylation, indicating its potential role in cancer cachexia-associated muscle atrophy.


Assuntos
Caquexia , Neoplasias do Colo , Flavanonas , Animais , Camundongos , Caquexia/etiologia , Caquexia/prevenção & controle , Caquexia/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Atrofia Muscular/etiologia , Atrofia Muscular/prevenção & controle , Neoplasias do Colo/complicações
3.
Int J Mol Sci ; 24(9)2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37175875

RESUMO

Our understanding of fundamental biological mechanisms and the pathogenesis of human diseases has been greatly improved by studying the genetics and genomics of zebrafish [...].


Assuntos
Genômica , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/genética
4.
Cell Mol Life Sci ; 80(3): 69, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36821008

RESUMO

Animal models have been utilized to understand the pathogenesis of Zellweger spectrum disorders (ZSDs); however, the link between clinical manifestations and molecular pathways has not yet been clearly established. We generated peroxin 5 homozygous mutant zebrafish (pex5-/-) to gain insight into the molecular pathogenesis of peroxisome dysfunction. pex5-/- display hallmarks of ZSD in humans and die within one month after birth. Fasting rapidly depletes lipids and glycogen in pex5-/- livers and expedites their mortality. Mechanistically, deregulated mitochondria and mechanistic target of rapamycin (mTOR) signaling act together to induce metabolic alterations that deplete hepatic nutrients and accumulate damaged mitochondria. Accordingly, chemical interventions blocking either the mitochondrial function or mTOR complex 1 (mTORC1) or a combination of both improve the metabolic imbalance shown in the fasted pex5-/- livers and extend the survival of animals. In addition, the suppression of oxidative stress by N-acetyl L-cysteine (NAC) treatment rescued the apoptotic cell death and early mortality observed in pex5-/-. Furthermore, an autophagy activator effectively ameliorated the early mortality of fasted pex5-/-. These results suggest that fasting may be detrimental to patients with peroxisome dysfunction, and that modulating the mitochondria, mTORC1, autophagy activities, or oxidative stress may provide a therapeutic option to alleviate the symptoms of peroxisomal diseases associated with metabolic dysfunction.


Assuntos
Jejum , Mitocôndrias , Receptor 1 de Sinal de Orientação para Peroxissomos , Peixe-Zebra , Animais , Humanos , Autofagia/fisiologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Mitocôndrias/metabolismo , Peroxissomos/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Receptor 1 de Sinal de Orientação para Peroxissomos/genética , Receptor 1 de Sinal de Orientação para Peroxissomos/metabolismo
5.
Autophagy ; 19(6): 1781-1802, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36541703

RESUMO

Peroxisomes are rapidly degraded during amino acid and oxygen deprivation by a type of selective autophagy called pexophagy. However, how damaged peroxisomes are detected and removed from the cell is poorly understood. Recent studies suggest that the peroxisomal matrix protein import machinery may serve double duty as a quality control machinery, where they are directly involved in activating pexophagy. Here, we explored whether any matrix import factors are required to prevent pexophagy, such that their loss designates peroxisomes for degradation. Using gene editing and quantitative fluorescence microscopy on culture cells and a zebrafish model system, we found that PEX13, a component of the peroxisomal matrix import system, is required to prevent the degradation of otherwise healthy peroxisomes. The loss of PEX13 caused an accumulation of ubiquitinated PEX5 on peroxisomes and an increase in peroxisome-dependent reactive oxygen species that coalesce to induce pexophagy. We also found that PEX13 protein level is downregulated to aid in the induction of pexophagy during amino acid starvation. Together, our study points to PEX13 as a novel pexophagy regulator that is modulated to maintain peroxisome homeostasis.Abbreviations: AAA ATPases: ATPases associated with diverse cellular activities; ABCD3: ATP binding cassette subfamily D member; 3ACOX1: acyl-CoA oxidase; 1ACTA1: actin alpha 1, skeletal muscle; ACTB: actin beta; ATG5: autophagy related 5; ATG7: autophagy related 7; ATG12: autophagy related 12; ATG16L1: autophagy related 16 like 1; CAT: catalase; CQ: chloroquine; Dpf: days post fertilization: FBS: fetal bovine serum; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; H2O2: hydrogen peroxide; HA - human influenza hemagglutinin; HBSS: Hanks' Balanced Salt Solution; HCQ; hydroxychloroquine; KANL: lysine alanine asparagine leucine; KO: knockout; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MEF: mouse embryonic fibroblast; MTOR: mechanistic target of rapamycin kinase; MTORC1: mechanistic target of rapamycin kinase complex 1; MTORC2: mechanistic target of rapamycin kinase complex 2; MYC: MYC proto-oncogene, bHLH transcription factor; MZ: maternal and zygotic; NAC: N-acetyl cysteine; NBR1 - NBR1 autophagy cargo receptor; PBD: peroxisome biogenesis disorder; PBS: phosphate-buffered saline; PEX: peroxisomal biogenesis factor; PTS1: peroxisome targeting sequence 1; RFP: red fluorescent protein; ROS: reactive oxygen speciess; iRNA: short interfering RNA; SKL: serine lysine leucine; SLC25A17/PMP34: solute carrier family 25 member 17; Ub: ubiquitin; USP30: ubiquitin specific peptidase 30.


Assuntos
Autofagia , Macroautofagia , Animais , Humanos , Camundongos , Autofagia/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Leucina/metabolismo , Lisina/metabolismo , Actinas/metabolismo , Peixe-Zebra/metabolismo , Fibroblastos/metabolismo , Ubiquitina/metabolismo , Peroxissomos/metabolismo , Aminoácidos/metabolismo , Oxigênio/metabolismo , Sirolimo , Proteínas de Membrana/metabolismo
6.
Cell Commun Signal ; 20(1): 192, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36474295

RESUMO

BACKGROUND: Lysosomes are a central hub for cellular metabolism and are involved in the regulation of cell homeostasis through the degradation or recycling of unwanted or dysfunctional organelles through the autophagy pathway. Catalase, a peroxisomal enzyme, plays an important role in cellular antioxidant defense by decomposing hydrogen peroxide into water and oxygen. In accordance with pleiotropic significance, both impaired lysosomes and catalase have been linked to many age-related pathologies with a decline in lifespan. Aging is characterized by progressive accumulation of macromolecular damage and the production of high levels of reactive oxygen species. Although lysosomes degrade the most long-lived proteins and organelles via the autophagic pathway, the role of lysosomes and their effect on catalase during aging is not known. The present study investigated the role of catalase and lysosomal function in catalase-knockout (KO) mice. METHODS: We performed experiments on WT and catalase KO younger (9 weeks) and mature adult (53 weeks) male mice and Mouse embryonic fibroblasts isolated from WT and KO mice from E13.5 embryos as in vivo and in ex-vivo respectively. Mouse phenotyping studies were performed with controls, and a minimum of two independent experiments were performed with more than five mice in each group. RESULTS: We found that at the age of 53 weeks (mature adult), catalase-KO mice exhibited an aging phenotype faster than wild-type (WT) mice. We also found that mature adult catalase-KO mice induced leaky lysosome by progressive accumulation of lysosomal content, such as cathespin D, into the cytosol. Leaky lysosomes inhibited autophagosome formation and triggered impaired autophagy. The dysregulation of autophagy triggered mTORC1 (mechanistic target of rapamycin complex 1) activation. However, the antioxidant N-acetyl-L-cysteine and mTORC1 inhibitor rapamycin rescued leaky lysosomes and aging phenotypes in catalase-deficient mature adult mice. CONCLUSIONS: This study unveils the new role of catalase and its role in lysosomal function during aging. Video abstract.


Assuntos
Fibroblastos , Lisossomos , Masculino , Camundongos , Animais
7.
J Biochem ; 173(1): 53-63, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36270274

RESUMO

The Nudt family has been identified as enzymes performing Coenzyme A to 3'5'-ADP + 4'-phospho pantetheine catalysis. The members of this family have been shown to be particularly involved in lipid metabolism, while their involvement in gene regulation through regulating transcription or mRNA metabolism has also been suggested. Here, we focused on peroxisomal NUDT7, possessing enzymatic activity similar to that of its paralog, peroxisomal NUDT19, which is involved in mRNA degradation. No reports have been published about the Nudt family in zebrafish. Our transcriptomic data showed that the Nudt family members are highly expressed around zygotic gene activation (ZGA) in developing zebrafish embryos. Therefore, we confirmed the computational prediction that the products of the nudt7 gene in zebrafish were localized in the peroxisome and highly expressed in early embryogenesis. The depletion of nudt7 genes by the CRISPR/Cas9 system did not affect development; however, it decreased the rate of transcription in ZGA. In addition, H3K27ac ChIP-seq analysis demonstrated that this decrease in transcription was correlated with the genome-wide decrease of H3K27ac level. This study suggests that peroxisomal Nudt7 functions in regulating transcription in ZGA via formation of the H3K27ac domain in active chromatin.


Assuntos
Transcriptoma , Peixe-Zebra , Animais , Peixe-Zebra/genética , Cromatina , Genoma , Perfilação da Expressão Gênica
8.
J Inflamm Res ; 15: 4623-4636, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35991005

RESUMO

Background: Dunnione has anti-inflammatory properties arising from its ability to alter the ratio of NAD+/NADH through NAD(P)H quinone oxidoreductase 1 (NQO1) enzymatic action, followed by subsequent inhibition of NF-κB and inflammatory cytokines. Psoriasis is a chronic, inflammatory skin disorder in which the IL-23/Th17 axis plays an important role in inflammation. However, it is unclear whether modulation of NAD+ levels affects psoriasis, such as skin inflammation. Therefore, in this study, we investigated the effect of NAD+/NADH ratio modulation on imiquimod (IMQ)-induced, psoriasis-like skin inflammation in mice. Methods: Psoriasis-like skin inflammation was generated by daily topical application of IMQ cream. The severity of dermatitis was assessed using the Psoriasis Area Severity Index (PASI) and histochemistry. Expression of inflammatory cytokines was detected by enzyme-linked immunosorbent assay and quantitative PCR. Acetylation of NF-κB p65 and STAT3 was determined by Western blotting. Results: Dunnione improved IMQ-induced epidermal hyperplasia and inflammation, consistent with decreased levels of inflammatory cytokines (IL-17, IL-22, and IL-23) in skin lesions. Moreover, we found that an increase in the NAD+/NADH ratio by dunnione restored SIRT1 activity, thereby reduced imiquimod-induced STAT3 acetylation, which modulates the expression of psoriasis-promoting inflammatory cytokines, such as IL-17, IL-22, and IL-23. Conclusion: Pharmacological modulation of cellular NAD+ levels could be a promising therapeutic approach for psoriasis-like skin disease.

9.
Int J Mol Sci ; 23(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35328708

RESUMO

Polyhexamethylene guanidine phosphate (PHMG-P), a cationic biocide, is widely used in household products due to its strong bactericidal activity and low toxicity. However, it causes fatal lung damage when inhaled. In this study, we investigated why PHMG-P causes fatal lung injury when inhaled, and demonstrated that the disruption of membrane integrity through ionic interaction-a molecular initiating event of PHMG-P-determines toxicity. Mice were injected intravenously with 0.9 or 7.2 mg/kg PHMG-P (IV group), or instilled intratracheally with 0.9 mg/kg PHMG-P (ITI group); they were euthanatized at 4 h and on days 1 and 7 after treatment. Increased total BAL cell count and proinflammatory cytokine production, along with fibrotic changes in the lungs, were detected in the ITI group only. Levels of hepatic enzymes and hepatic serum amyloid A mRNA expression were markedly upregulated in the 7.2 mg/kg IV and ITI groups at 4 h or day 1 after treatment, but returned to baseline. No pathological findings were detected in the heart, liver, or kidneys. To simulate the IV injection, A549, THP-1, and HepG2 cells were treated with PHMG-P in cell culture media supplemented with different serum concentrations. Increased serum concentration was associated with an increase in cell viability. These results support the idea that direct contact between PHMG-P and cell membranes is necessary for PHMG-induced toxicity.


Assuntos
Desinfetantes , Lesão Pulmonar , Animais , Desinfetantes/toxicidade , Guanidinas/toxicidade , Pulmão/patologia , Lesão Pulmonar/patologia , Camundongos
10.
Artigo em Inglês | MEDLINE | ID: mdl-34517131

RESUMO

Non-shivering thermogenesis (NST) is a heat generating process controlled by the mitochondria of brown adipose tissue (BAT). In the recent decade, 'functionally' acting brown adipocytes in white adipose tissue (WAT) has been identified as well: the so-called process of the 'browning' of WAT. While the importance of uncoupling protein 1 (UCP1)-oriented mitochondrial activation has been intensely studied, the role of peroxisomes during the browning of white adipocytes is poorly understood. Here, we assess the change in peroxisomal membrane proteins, or peroxins (PEXs), during cold stimulation and importantly, the role of PEX13 in the cold-induced remodeling of white adipocytes. PEX13, a protein that originally functions as a docking factor and is involved in protein import into peroxisome matrix, was highly increased during cold-induced recruitment of beige adipocytes within the inguinal WAT of C57BL/6 mice. Moreover, beige-induced 3 T3-L1 adipocytes and stromal vascular fraction (SVF) cells by exposure to the peroxisome proliferator-activated receptor gamma (PPARγ) agonist rosiglitazone showed a significant increase in mitochondrial thermogenic factors along with peroxisomal proteins including PEX13, and these were confirmed in SVF cells with the beta 3 adrenergic receptor (ß3AR)-selective agonist CL316,243. To verify the relevance of PEX13, we used the RNA silencing method targeting the Pex13 gene and evaluated the subsequent beige development in SVF cells. Interestingly, siPex13 treatment suppressed expression of thermogenic proteins such as UCP1 and PPARγ coactivator 1 alpha (PGC1α). Overall, our data provide evidence supporting the role of peroxisomal proteins, in particular PEX13, during beige remodeling of white adipocytes.


Assuntos
Tecido Adiposo Branco/metabolismo , Proteínas de Membrana/genética , PPAR gama/genética , Termogênese/genética , Proteína Desacopladora 1/genética , Células 3T3-L1 , Tecido Adiposo Marrom/metabolismo , Agonistas de Receptores Adrenérgicos beta 3/farmacologia , Animais , Dioxóis/farmacologia , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Peroxissomos/genética , Interferência de RNA , Receptores Adrenérgicos beta 3/genética , Fração Vascular Estromal/genética , Fração Vascular Estromal/metabolismo
11.
Cell Biosci ; 11(1): 201, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34876210

RESUMO

BACKGROUND: Fatty acids (FA) derived from adipose tissue and liver serve as the main fuel in thermogenesis of brown adipose tissue (BAT). Catalase, a peroxisomal enzyme, plays an important role in maintaining intracellular redox homeostasis by decomposing hydrogen peroxide to either water or oxygen that oxidize and provide fuel for cellular metabolism. Although the antioxidant enzymatic activity of catalase is well known, its role in the metabolism and maintenance of energy homeostasis has not yet been revealed. The present study investigated the role of catalase in lipid metabolism and thermogenesis during nutrient deprivation in catalase-knockout (KO) mice. RESULTS: We found that hepatic triglyceride accumulation in KO mice decreased during sustained fasting due to lipolysis through reactive oxygen species (ROS) generation in adipocytes. Furthermore, the free FA released from lipolysis were shuttled to BAT through the activation of CD36 and catabolized by lipoprotein lipase in KO mice during sustained fasting. Although the exact mechanism for the activation of the FA receptor enzyme, CD36 in BAT is still unclear, we found that ROS generation in adipocytes mediated the shuttling of FA to BAT. CONCLUSIONS: Taken together, our findings uncover the novel role of catalase in lipid metabolism and thermogenesis in BAT, which may be useful in understanding metabolic dysfunction.

12.
J Cachexia Sarcopenia Muscle ; 12(6): 2220-2230, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34704369

RESUMO

BACKGROUND: Sarcopenia is defined as muscle wasting, characterized by a progressive loss of muscle mass and function due to ageing. Diagnosis of sarcopenia typically involves both muscle imaging and the physical performance of people exhibiting signs of muscle weakness. Despite its worldwide prevalence, a molecular method for accurately diagnosing sarcopenia has not been established. METHODS: We develop an artificial intelligence (AI) diagnosis model of sarcopenia using a published transcriptome dataset comprising patients from multiple ethnicities. For the AI model for sarcopenia diagnosis, we use a transcriptome database comprising 17 339 genes from 118 subjects. Among the 17 339 genes, we select 27 features as the model inputs. For feature selection, we use a random forest, extreme gradient boosting and adaptive boosting. Using the top 27 features, we propose a four-layer deep neural network, named DSnet-v1, for sarcopenia diagnosis. RESULTS: Among isolated testing datasets, DSnet-v1 provides high sensitivity (100%), specificity (94.12%), accuracy (95.83%), balanced accuracy (97.06%) and area under receiver operating characteristics (0.99). To extend the number of patient data, we develop a web application (http://sarcopeniaAI.ml/), where the model can be accessed unrestrictedly to diagnose sarcopenia if the transcriptome is available. A focused analysis of the top 27 genes for their differential or co-expression with other genes implied the potential existence of race-specific factors for sarcopenia, suggesting the possibility of identifying causal factors of sarcopenia when a more extended dataset is provided. CONCLUSIONS: Our new AI model, DSnet-v1, accurately diagnoses sarcopenia and is currently available publicly to assist healthcare providers in diagnosing and treating sarcopenia.


Assuntos
Inteligência Artificial , Sarcopenia , Biomarcadores , Humanos , Inteligência , Prognóstico , Sarcopenia/diagnóstico , Sarcopenia/epidemiologia , Sarcopenia/genética
13.
Int J Mol Sci ; 22(8)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924375

RESUMO

Zebrafish have become a popular animal model for studying various biological processes and human diseases. The metabolic pathways and players conserved among zebrafish and mammals facilitate the use of zebrafish to understand the pathological mechanisms underlying various metabolic disorders in humans. Adipocytes play an important role in metabolic homeostasis, and zebrafish adipocytes have been characterized. However, a versatile and reliable zebrafish model for long-term monitoring of adipose tissues has not been reported. In this study, we generated stable transgenic zebrafish expressing enhanced green fluorescent protein (EGFP) in adipocytes. The transgenic zebrafish harbored adipose tissues that could be detected using GFP fluorescence and the morphology of single adipocyte could be investigated in vivo. In addition, we demonstrated the applicability of this model to the long-term in vivo imaging of adipose tissue development and regulation based on nutrition. The transgenic zebrafish established in this study may serve as an excellent tool to advance the characterization of white adipose tissue in zebrafish, thereby aiding the development of therapeutic interventions to treat metabolic diseases in humans.


Assuntos
Adipócitos/citologia , Adipócitos/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Tecido Adiposo/metabolismo , Fenômenos Fisiológicos da Nutrição Animal , Animais , Animais Geneticamente Modificados , Forma Celular , Proteínas de Fluorescência Verde/metabolismo , Larva/genética , Larva/metabolismo , Regiões Promotoras Genéticas/genética , Transgenes , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
14.
Exp Mol Med ; 53(3): 310-317, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33649498

RESUMO

Zebrafish have several advantages compared to other vertebrate models used in modeling human diseases, particularly for large-scale genetic mutant and therapeutic compound screenings, and other biomedical research applications. With the impactful developments of CRISPR and next-generation sequencing technology, disease modeling in zebrafish is accelerating the understanding of the molecular mechanisms of human genetic diseases. These efforts are fundamental for the future of precision medicine because they provide new diagnostic and therapeutic solutions. This review focuses on zebrafish disease models for biomedical research, mainly in developmental disorders, mental disorders, and metabolic diseases.


Assuntos
Pesquisa Biomédica , Deficiências do Desenvolvimento/patologia , Modelos Animais de Doenças , Transtornos Mentais/patologia , Doenças Metabólicas/patologia , Animais , Deficiências do Desenvolvimento/terapia , Humanos , Transtornos Mentais/terapia , Doenças Metabólicas/terapia , Peixe-Zebra
15.
EMBO Rep ; 21(5): e48901, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32157776

RESUMO

Recent evidence has linked the lysosomal cholesterol accumulation in Niemann-Pick type C1 with anomalies associated with primary ciliogenesis. Here, we report that perturbed intracellular cholesterol distribution imposed by lysosomal cholesterol accumulation during TMEM135 depletion is closely associated with impaired ciliogenesis. TMEM135 depletion does not affect the formation of the basal body and the ciliary transition zone. TMEM135 depletion severely blunts Rab8 trafficking to the centrioles without affecting the centriolar localization of Rab11 and Rabin8, the upstream regulators of Rab8 activation. Although TMEM135 depletion prevents enhanced IFT20 localization at the centrioles, ciliary vesicle formation is not affected. Furthermore, enhanced IFT20 localization at the centrioles is dependent on Rab8 activation. Supplementation of cholesterol in complex with cyclodextrin rescues Rab8 trafficking to the centrioles and Rab8 activation, thereby recovering primary ciliogenesis in TMEM135-depleted cells. Taken together, our data suggest that TMEM135 depletion prevents ciliary vesicle elongation, a characteristic of impaired Rab8 function. Our study thus reveals a previously uncharacterized effect of erroneous intracellular cholesterol distribution on impairing Rab8 function and primary ciliogenesis.


Assuntos
Colesterol , Cílios , Proteínas rab de Ligação ao GTP , Centríolos/metabolismo , Colesterol/metabolismo , Cílios/metabolismo , Humanos , Transporte Proteico , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
16.
Autophagy ; 16(11): 1989-2003, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31964216

RESUMO

Quality control of peroxisomes is essential for cellular homeostasis. However, the mechanism underlying pexophagy is largely unknown. In this study, we identified HSPA9 as a novel pexophagy regulator. Downregulation of HSPA9 increased macroautophagy/autophagy but decreased the number of peroxisomes in vitro and in vivo. The loss of peroxisomes by HSPA9 depletion was attenuated in SQSTM1-deficient cells. In HSPA9-deficient cells, the level of peroxisomal reactive oxygen species (ROS) increased, while inhibition of ROS blocked pexophagy in HeLa and SH-SY5Y cells. Importantly, reconstitution of HSPA9 mutants found in Parkinson disease failed to rescue the loss of peroxisomes, whereas reconstitution with wild type inhibited pexophagy in HSPA9-depleted cells. Knockdown of Hsc70-5 decreased peroxisomes in Drosophila, and the HSPA9 mutants failed to rescue the loss of peroxisomes in Hsc70-5-depleted flies. Taken together, our findings suggest that the loss of HSPA9 enhances peroxisomal degradation by pexophagy.


Assuntos
Autofagia/fisiologia , Proteínas de Choque Térmico HSP70/metabolismo , Macroautofagia/fisiologia , Proteínas Mitocondriais/metabolismo , Peroxissomos/metabolismo , Humanos , Espécies Reativas de Oxigênio/metabolismo
17.
J Cell Physiol ; 235(1): 151-165, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31187491

RESUMO

Slc25a17 is known as a peroxisomal solute carrier, but the in vivo role of the protein has not been demonstrated. We found that the zebrafish genome contains two slc25a17 genes that function redundantly, but additively. Notably, peroxisome function in slc25a17 knockdown embryos is severely compromised, resulting in an altered lipid composition. Along the defects found in peroxisome-associated phenotypic presentations, we highlighted that development of the swim bladder is also highly dependent on Slc25a17 function. As Slc25a17 showed substrate specificity towards coenzyme A (CoA), injecting CoA, but not NAD+ , rescued the defective swim bladder induced by slc25a17 knockdown. These results indicated that Slc25a17 acts as a CoA transporter, involved in the maintenance of functional peroxisomes that are essential for the development of multiple organs during zebrafish embryogenesis. Given high homology in protein sequences, the role of zebrafish Slc25a17 may also be applicable to the mammalian system.


Assuntos
Coenzima A/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Membrana/metabolismo , Sacos Aéreos/crescimento & desenvolvimento , Sacos Aéreos/metabolismo , Sequência de Aminoácidos , Animais , Coenzima A/genética , Sequência Conservada , Evolução Molecular , Proteínas de Membrana/genética , Peixe-Zebra
19.
Nutrients ; 11(9)2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31509935

RESUMO

The alteration of white adipose tissue (WAT) "browning", a change of white into beige fat, has been considered as a new therapeutic strategy to treat obesity. In this study, we investigated the browning effect of black raspberry (Rubus coreanus Miquel) using in vitro and in vivo models. Black raspberry water extract (BRWE) treatment inhibited lipid accumulation in human mesenchymal stem cells (hMSCs) and zebrafish. To evaluate the thermogenic activity, BRWE was orally administered for 2 weeks, and then, the mice were placed in a 4 °C environment. As a result, BRWE treatment increased rectal temperature and inguinal WAT (iWAT) thermogenesis by inducing the expression of beige fat specific markers such as PR domain zinc-finger protein 16 (PRDM16), uncoupling protein 1 (UCP1), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), and t-box protein 1 (TBX1) in cold-exposed mice. Furthermore, ellagic acid (EA), a constituent of BRWE, markedly promoted beige specific markers: UCP1, PGC1α, TBX1, and nuclear respiratory factor 1 in beige differentiation media (DM)-induced 3T3-L1 adipocytes. Our findings indicate that BRWE can promote beige differentiation/activation, and EA is the active compound responsible for such effect. Thus, we suggest the nature-derived agents BRWE and EA as potential agents for obesity treatment.


Assuntos
Adipócitos Bege/efeitos dos fármacos , Adipócitos Brancos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Tecido Adiposo Bege/efeitos dos fármacos , Tecido Adiposo Branco/efeitos dos fármacos , Fármacos Antiobesidade/farmacologia , Extratos Vegetais/farmacologia , Termogênese/efeitos dos fármacos , Células 3T3-L1 , Adipócitos Bege/metabolismo , Adipócitos Brancos/metabolismo , Tecido Adiposo Bege/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Fármacos Antiobesidade/isolamento & purificação , Temperatura Baixa , Regulação da Expressão Gênica , Humanos , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Extratos Vegetais/isolamento & purificação , Rubus/química , Transdução de Sinais , Peixe-Zebra
20.
Aging Cell ; 18(5): e13016, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31353811

RESUMO

Age-related hearing loss (ARHL) is a major neurodegenerative disorder and the leading cause of communication deficit in the elderly population, which remains largely untreated. The development of ARHL is a multifactorial event that includes both intrinsic and extrinsic factors. Recent studies suggest that NAD+ /NADH ratio may play a critical role in cellular senescence by regulating sirtuins, PARP-1, and PGC-1α. Nonetheless, the beneficial effect of direct modulation of cellular NAD+ levels on aging and age-related diseases has not been studied, and the underlying mechanisms remain obscure. Herein, we investigated the effect of ß-lapachone (ß-lap), a known plant-derived metabolite that modulates cellular NAD+ by conversion of NADH to NAD+ via the enzymatic action of NADH: quinone oxidoreductase 1 (NQO1) on ARHL in C57BL/6 mice. We elucidated that the reduction of cellular NAD+ during the aging process was an important contributor for ARHL; it facilitated oxidative stress and pro-inflammatory responses in the cochlear tissue through regulating sirtuins that alter various signaling pathways, such as NF-κB, p53, and IDH2. However, augmentation of NAD+ by ß-lap effectively prevented ARHL and accompanying deleterious effects through reducing inflammation and oxidative stress, sustaining mitochondrial function, and promoting mitochondrial biogenesis in rodents. These results suggest that direct regulation of cellular NAD+ levels by pharmacological agents may be a tangible therapeutic option for treating various age-related diseases, including ARHL.


Assuntos
Envelhecimento/metabolismo , Perda Auditiva/metabolismo , NAD(P)H Desidrogenase (Quinona)/metabolismo , NAD/metabolismo , Envelhecimento/efeitos dos fármacos , Animais , Perda Auditiva/tratamento farmacológico , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Naftoquinonas/farmacologia , Estresse Oxidativo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA