Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Genet ; 52(3): 264-272, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32094912

RESUMO

Lineage-specific gene expression is modulated by a balance between transcriptional activation and repression during animal development. Knowledge about enhancer-centered transcriptional activation has advanced considerably, but silencers and their roles in normal development remain poorly understood. Here, we performed chromatin interaction analyses of Polycomb repressive complex 2 (PRC2), a key inducer of transcriptional gene silencing, to uncover silencers, their molecular identity and associated chromatin connectivity. Systematic analysis of cis-regulatory silencer elements reveals their chromatin features and gene-targeting specificity. Deletion of certain PRC2-bound silencers in mice results in transcriptional derepression of their interacting genes and pleiotropic developmental phenotypes, including embryonic lethality. While some PRC2-bound elements function as silencers in pluripotent cells, they can transition into active tissue-specific enhancers during development, highlighting their regulatory versatility. Our study characterizes the molecular profile of silencers and their associated chromatin architectures, and suggests the possibility of targeted reactivation of epigenetically silenced genes.


Assuntos
Cromatina/genética , Elementos Facilitadores Genéticos/genética , Inativação Gênica , Complexo Repressor Polycomb 2/metabolismo , Proteínas Repressoras/metabolismo , Elementos Silenciadores Transcricionais/genética , Animais , Linhagem Celular , Feminino , Masculino , Camundongos , Camundongos Knockout , Células-Tronco Embrionárias Murinas , Especificidade de Órgãos , Fenótipo , Complexo Repressor Polycomb 2/genética , Proteínas Repressoras/genética , Ativação Transcricional
2.
Arch Pathol Lab Med ; 144(6): 735-741, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31509456

RESUMO

CONTEXT.­: The ability to determine ROS1 status has become mandatory for patients with lung adenocarcinoma, as many global authorities have approved crizotinib for patients with ROS1-positive lung adenocarcinoma. OBJECTIVE.­: To present analytical correlation of the VENTANA ROS1 (SP384) Rabbit Monoclonal Primary Antibody (ROS1 [SP384] antibody) with ROS1 fluorescence in situ hybridization (FISH). DESIGN.­: The immunohistochemistry (IHC) and FISH analytical comparison was assessed by using 122 non-small cell lung cancer samples that had both FISH (46 positive and 76 negative cases) and IHC staining results available. In addition, reverse transcription-polymerase chain reaction (RT-PCR) as well as DNA and RNA next-generation sequencing (NGS) were used to further examine the ROS1 status in cases that were discrepant between FISH and IHC, based on staining in the cytoplasm of 2+ or above in more than 30% of total tumor cells considered as IHC positive. Here, we define the consensus status as the most frequent result across the 5 different methods (IHC, FISH, RT-PCR, RNA NGS, and DNA NGS) we used to determine ROS1 status in these cases. RESULTS.­: Of the IHC scoring methods examined, staining in the cytoplasm of 2+ or above in more than 30% of total tumor cells considered as IHC positive had the highest correlation with a FISH-positive status, reaching a positive percentage agreement of 97.8% and negative percentage agreement of 89.5%. A positive percentage agreement (100%) and negative percentage agreement (92.0%) was reached by comparing ROS1 (SP384) using a cutoff for staining in the cytoplasm of 2+ or above in more than 30% of total tumor cells to the consensus status. CONCLUSIONS.­: Herein, we present a standardized staining protocol for ROS1 (SP384) and data that support the high correlation between ROS1 status and ROS1 (SP384) antibody.


Assuntos
Biomarcadores Tumorais/análise , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Proteínas Tirosina Quinases/análise , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas/análise , Proteínas Proto-Oncogênicas/genética , Biomarcadores Tumorais/genética , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Proteínas de Fusão Oncogênica/análise , Proteínas de Fusão Oncogênica/genética
3.
Genome Biol ; 18(1): 28, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28196534

RESUMO

BACKGROUND: The fungal genus Aspergillus is of critical importance to humankind. Species include those with industrial applications, important pathogens of humans, animals and crops, a source of potent carcinogenic contaminants of food, and an important genetic model. The genome sequences of eight aspergilli have already been explored to investigate aspects of fungal biology, raising questions about evolution and specialization within this genus. RESULTS: We have generated genome sequences for ten novel, highly diverse Aspergillus species and compared these in detail to sister and more distant genera. Comparative studies of key aspects of fungal biology, including primary and secondary metabolism, stress response, biomass degradation, and signal transduction, revealed both conservation and diversity among the species. Observed genomic differences were validated with experimental studies. This revealed several highlights, such as the potential for sex in asexual species, organic acid production genes being a key feature of black aspergilli, alternative approaches for degrading plant biomass, and indications for the genetic basis of stress response. A genome-wide phylogenetic analysis demonstrated in detail the relationship of the newly genome sequenced species with other aspergilli. CONCLUSIONS: Many aspects of biological differences between fungal species cannot be explained by current knowledge obtained from genome sequences. The comparative genomics and experimental study, presented here, allows for the first time a genus-wide view of the biological diversity of the aspergilli and in many, but not all, cases linked genome differences to phenotype. Insights gained could be exploited for biotechnological and medical applications of fungi.


Assuntos
Adaptação Biológica , Aspergillus/classificação , Aspergillus/genética , Biodiversidade , Genoma Fúngico , Genômica , Aspergillus/metabolismo , Biomassa , Carbono/metabolismo , Biologia Computacional/métodos , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Metilação de DNA , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Redes Reguladoras de Genes , Genômica/métodos , Humanos , Redes e Vias Metabólicas , Anotação de Sequência Molecular , Família Multigênica , Oxirredutases/metabolismo , Filogenia , Plantas/metabolismo , Plantas/microbiologia , Metabolismo Secundário/genética , Transdução de Sinais , Estresse Fisiológico/genética
4.
Nat Commun ; 7: 12662, 2016 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-27601008

RESUMO

The most frequently encountered symbiont on tree roots is the ascomycete Cenococcum geophilum, the only mycorrhizal species within the largest fungal class Dothideomycetes, a class known for devastating plant pathogens. Here we show that the symbiotic genomic idiosyncrasies of ectomycorrhizal basidiomycetes are also present in C. geophilum with symbiosis-induced, taxon-specific genes of unknown function and reduced numbers of plant cell wall-degrading enzymes. C. geophilum still holds a significant set of genes in categories known to be involved in pathogenesis and shows an increased genome size due to transposable elements proliferation. Transcript profiling revealed a striking upregulation of membrane transporters, including aquaporin water channels and sugar transporters, and mycorrhiza-induced small secreted proteins (MiSSPs) in ectomycorrhiza compared with free-living mycelium. The frequency with which this symbiont is found on tree roots and its possible role in water and nutrient transport in symbiosis calls for further studies on mechanisms of host and environmental adaptation.


Assuntos
Ascomicetos/genética , Ecossistema , Genoma Fúngico , Micorrizas/genética , Aquaporinas/metabolismo , Basidiomycota/genética , DNA Fúngico/genética , Proteínas Fúngicas , Regulação Fúngica da Expressão Gênica , Micorrizas/fisiologia , Filogenia , Pinus sylvestris/microbiologia , Raízes de Plantas/microbiologia , Transcriptoma , Água
5.
Proc Natl Acad Sci U S A ; 113(35): 9882-7, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27535936

RESUMO

Ascomycete yeasts are metabolically diverse, with great potential for biotechnology. Here, we report the comparative genome analysis of 29 taxonomically and biotechnologically important yeasts, including 16 newly sequenced. We identify a genetic code change, CUG-Ala, in Pachysolen tannophilus in the clade sister to the known CUG-Ser clade. Our well-resolved yeast phylogeny shows that some traits, such as methylotrophy, are restricted to single clades, whereas others, such as l-rhamnose utilization, have patchy phylogenetic distributions. Gene clusters, with variable organization and distribution, encode many pathways of interest. Genomics can predict some biochemical traits precisely, but the genomic basis of others, such as xylose utilization, remains unresolved. Our data also provide insight into early evolution of ascomycetes. We document the loss of H3K9me2/3 heterochromatin, the origin of ascomycete mating-type switching, and panascomycete synteny at the MAT locus. These data and analyses will facilitate the engineering of efficient biosynthetic and degradative pathways and gateways for genomic manipulation.


Assuntos
Biotecnologia/métodos , Genoma Fúngico/genética , Genômica/métodos , Leveduras/genética , Ascomicetos/classificação , Ascomicetos/genética , Ascomicetos/metabolismo , Evolução Molecular , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Código Genético/genética , Redes e Vias Metabólicas/genética , Filogenia , Especificidade da Espécie , Leveduras/classificação , Leveduras/metabolismo
6.
PLoS One ; 10(10): e0141586, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26510163

RESUMO

The basidiomycete fungus Coprinopsis cinerea is an important model system for multicellular development. Fruiting bodies of C. cinerea are typical mushrooms, which can be produced synchronously on defined media in the laboratory. To investigate the transcriptome in detail during fruiting body development, high-throughput sequencing (RNA-seq) was performed using cDNA libraries strand-specifically constructed from 13 points (stages/tissues) with two biological replicates. The reads were aligned to 14,245 predicted transcripts, and counted for forward and reverse transcripts. Differentially expressed genes (DEGs) between two adjacent points and between vegetative mycelium and each point were detected by Tag Count Comparison (TCC). To validate RNA-seq data, expression levels of selected genes were compared using RPKM values in RNA-seq data and qRT-PCR data, and DEGs detected in microarray data were examined in MA plots of RNA-seq data by TCC. We discuss events deduced from GO analysis of DEGs. In addition, we uncovered both transcription factor candidates and antisense transcripts that are likely to be involved in developmental regulation for fruiting.


Assuntos
Basidiomycota/genética , Carpóforos/genética , RNA Fúngico , Análise de Sequência de RNA , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Hifas , Modelos Biológicos , RNA Antissenso , Reprodutibilidade dos Testes , Fatores de Transcrição/genética , Transcriptoma
7.
Genome Biol Evol ; 7(6): 1590-601, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25977457

RESUMO

As decomposers, fungi are key players in recycling plant material in global carbon cycles. We hypothesized that genomes of early diverging fungi may have inherited pectinases from an ancestral species that had been able to extract nutrients from pectin-containing land plants and their algal allies (Streptophytes). We aimed to infer, based on pectinase gene expansions and on the organismal phylogeny, the geological timing of the plant-fungus association. We analyzed 40 fungal genomes, three of which, including Gonapodya prolifera, were sequenced for this study. In the organismal phylogeny from 136 housekeeping loci, Rozella diverged first from all other fungi. Gonapodya prolifera was included among the flagellated, predominantly aquatic fungal species in Chytridiomycota. Sister to Chytridiomycota were the predominantly terrestrial fungi including zygomycota I and zygomycota II, along with the ascomycetes and basidiomycetes that comprise Dikarya. The Gonapodya genome has 27 genes representing five of the seven classes of pectin-specific enzymes known from fungi. Most of these share a common ancestry with pectinases from Dikarya. Indicating functional and sequence similarity, Gonapodya, like many Dikarya, can use pectin as a carbon source for growth in pure culture. Shared pectinases of Dikarya and Gonapodya provide evidence that even ancient aquatic fungi had adapted to extract nutrients from the plants in the green lineage. This implies that 750 million years, the estimated maximum age of origin of the pectin-containing streptophytes represents a maximum age for the divergence of Chytridiomycota from the lineage including Dikarya.


Assuntos
Evolução Molecular , Fungos/classificação , Filogenia , Poligalacturonase/genética , Eucariotos/genética , Fungos/enzimologia , Fungos/genética , Genoma Fúngico , Plantas/microbiologia
8.
Nat Genet ; 47(4): 410-5, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25706625

RESUMO

To elucidate the genetic bases of mycorrhizal lifestyle evolution, we sequenced new fungal genomes, including 13 ectomycorrhizal (ECM), orchid (ORM) and ericoid (ERM) species, and five saprotrophs, which we analyzed along with other fungal genomes. Ectomycorrhizal fungi have a reduced complement of genes encoding plant cell wall-degrading enzymes (PCWDEs), as compared to their ancestral wood decayers. Nevertheless, they have retained a unique array of PCWDEs, thus suggesting that they possess diverse abilities to decompose lignocellulose. Similar functional categories of nonorthologous genes are induced in symbiosis. Of induced genes, 7-38% are orphan genes, including genes that encode secreted effector-like proteins. Convergent evolution of the mycorrhizal habit in fungi occurred via the repeated evolution of a 'symbiosis toolkit', with reduced numbers of PCWDEs and lineage-specific suites of mycorrhiza-induced genes.


Assuntos
Genoma Fúngico/genética , Micorrizas/genética , Seleção Genética , Simbiose/genética , Virulência/genética , Sequência de Bases , Evolução Molecular , Deleção de Genes , Regulação Fúngica da Expressão Gênica/genética , Dados de Sequência Molecular , Micorrizas/patogenicidade , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia
9.
Nat Plants ; 1: 15107, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-27250540

RESUMO

Alga-derived lipids represent an attractive potential source of biofuels. However, lipid accumulation in algae is a stress response tightly coupled to growth arrest, thereby imposing a major limitation on productivity. To identify transcriptional regulators of lipid accumulation, we performed an integrative chromatin signature and transcriptomic analysis to decipher the regulation of lipid biosynthesis in the alga Chlamydomonas reinhardtii. Genome-wide histone modification profiling revealed remarkable differences in functional chromatin states between the algae and higher eukaryotes and uncovered regulatory components at the core of lipid accumulation pathways. We identified the transcription factor, PSR1, as a pivotal switch that triggers cytosolic lipid accumulation. Dissection of the PSR1-induced lipid profiles corroborates its role in coordinating multiple lipid-inducing stress responses. The comprehensive maps of functional chromatin signatures in a major clade of eukaryotic life and the discovery of a transcriptional regulator of algal lipid metabolism will facilitate targeted engineering strategies to mediate high lipid production in microalgae.

10.
New Phytol ; 205(4): 1552-1564, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25407899

RESUMO

The genus Amanita encompasses both symbiotic, ectomycorrhizal fungi and asymbiotic litter decomposers; all species are derived from asymbiotic ancestors. Symbiotic species are no longer able to degrade plant cell walls. The carbohydrate esterases family 1 (CE1s) is a diverse group of enzymes involved in carbon metabolism, including decomposition and carbon storage. CE1 genes of the ectomycorrhizal A. muscaria appear diverged from all other fungal homologues, and more similar to CE1s of bacteria, suggesting a horizontal gene transfer (HGT) event. In order to test whether AmanitaCE1s were acquired horizontally, we built a phylogeny of CE1s collected from across the tree of life, and describe the evolution of CE1 genes among Amanita and relevant lineages of bacteria. CE1s of symbiotic Amanita were very different from CE1s of asymbiotic Amanita, and are more similar to bacterial CE1s. The protein structure of one CE1 gene of A. muscaria matched a depolymerase that degrades the carbon storage molecule poly((R)-3-hydroxybutyrate) (PHB). Asymbiotic Amanita do not carry sequence or structural homologues of these genes. The CE1s acquired through HGT may enable novel metabolisms, or play roles in signaling or defense. This is the first evidence for the horizontal transfer of carbohydrate metabolism genes into ectomycorrhizal fungi.


Assuntos
Amanita/genética , Metabolismo dos Carboidratos/genética , Transferência Genética Horizontal , Genes Fúngicos , Micorrizas/genética , Amanita/enzimologia , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Modelos Moleculares , Filogenia , Mapeamento Físico do Cromossomo , Especificidade da Espécie
11.
Int J Dermatol ; 51(3): 349-54, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22348575

RESUMO

BACKGROUND: Dapsone is a commonly prescribed medication in dermatological practice. Its use is associated with a broad spectrum of adverse effects. Careful selection and monitoring of patients on dapsone are paramount in the prevention and early recognition of adverse effects. OBJECTIVE AND METHODS: We designed a risk-management program for dapsone at National Skin Centre, Singapore, enhancing an existing electronic medical records system and harnessing a team approach involving the nurses. This includes the performance of key laboratory tests before and after starting dapsone, ensuring adequate counseling before starting dapsone and screening for adverse effects using a questionnaire every visit. RESULTS: This system of dapsone prescription efficiently improved the adherence to safe prescription and monitoring guidelines. Average adherence rates for key safety parameters improved from 61.4% pre-implementation to 95.3% at six months and were sustained at 12 months at 91.3%. Percentage of follow-up cases in which all three key monitoring parameters were fulfilled increased from 9.5% to 79.6% (p=0.0001) after 12months. The percentage of new patients in which all four key monitoring parameters were met increased from 50% to 80%. It was not statistically significant possibly because of small patient numbers. This project has also translated into enhanced patient safety with dapsone dosages adjusted in 17 patients who experienced mild adverse effects. No severe adverse effects to dapsone were observed in the 12-month period. CONCLUSION: This example of risk management for dapsone may serve as a model for institutions looking at harnessing information technology and a team approach for safer prescription of high-alert medications.


Assuntos
Dapsona/uso terapêutico , Fármacos Dermatológicos/uso terapêutico , Registros Eletrônicos de Saúde , Fidelidade a Diretrizes , Adesão à Medicação , Guias de Prática Clínica como Assunto , Dapsona/efeitos adversos , Fármacos Dermatológicos/efeitos adversos , Monitoramento de Medicamentos/enfermagem , Humanos , Equipe de Assistência ao Paciente
12.
Microsc Res Tech ; 73(6): 583-96, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19937743

RESUMO

Retinoic acid receptor alpha (RARalpha)-deficient mice are sterile, with abnormalities in the progression of spermatogenesis and spermiogenesis. In this study, we investigated whether defective retinoid signaling involved at least in part, disrupted cell-cell interactions. Hypertonic fixation approaches revealed defects in the integrity of the Sertoli-cell barrier in the tubules of RARalpha-deficient testes. Dye transfer experiments further revealed that coupling between cells from the basal to adluminal compartments was aberrant. There were also differences in the expression of several known retinoic acid (RA)-responsive genes encoding structural components of tight junctions and gap junctions. Immunostaining demonstrated a delay in the incorporation of zonula occludens (ZO-1), a peripheral component protein of tight junctions, into the Sertoli cell tight junctions. Markedly reduced expression of connexin-40 in mutant pachytene spermatocytes and round spermatids was found by in situ hybridization. An ectopic distribution of vimentin and disrupted cyclic expression of vimentin, which is usually tightly regulated during spermiogenesis, was found in RARalpha-deficient testes at all ages examined. Thus, the specific defects in spermiogenesis in RARalpha-deficient testes may correlate with a disrupted cyclic expression of RA-responsive structural components, including vimentin, a downregulation of connexin-40 in spermatogenic cells, and delayed assembly of ZO-1 into Sertoli cell tight junctions. Interestingly, bioinformatic analysis revealed that many genes that are components of tight junctions and gap junctions contained potential retinoic acid response element binding sites.


Assuntos
Conexinas/metabolismo , Proteínas de Membrana/metabolismo , Fosfoproteínas/metabolismo , Receptores do Ácido Retinoico/deficiência , Espermatogênese , Animais , Regulação da Expressão Gênica , Masculino , Camundongos , Receptor alfa de Ácido Retinoico , Células de Sertoli/química , Espermatócitos/química , Vimentina/metabolismo , Proteína da Zônula de Oclusão-1 , Proteína alfa-5 de Junções Comunicantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA