Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 224
Filtrar
1.
Chemosphere ; 358: 142211, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697573

RESUMO

This paper investigates the effects of argon (Ar) and that of Ar mixed with ambient air (Ar-Air) cold plasma jets (CPJs) on 4-nitrophenol (4-NP) degradation using low input power. The introduction of ambient air into the Ar-Air plasma jet enhances ionization-driven processes during high-voltage discharge by utilizing nitrogen and oxygen molecules from ambient air, resulting in increased reactive oxygen and nitrogen species (RONS) production, which synergistically interacts with argon. This substantial generation of RONS establishes Ar-Air plasma jet as an effective method for treating 4-NP contamination in deionized water (DW). Notably, the Ar-Air plasma jet treatment outperforms that of the Ar jet. It achieves a higher degradation rate of 97.2% and a maximum energy efficiency of 57.3 gkW-1h-1, following a 6-min (min) treatment with 100 mgL-1 4-NP in DW. In contrast, Ar jet treatment yielded a lower degradation rate and an energy efficiency of 75.6% and 47.8 gkW-1h-1, respectively, under identical conditions. Furthermore, the first-order rate coefficient for 4-NP degradation was measured at 0.23 min-1 for the Ar plasma jet and significantly higher at 0.56 min-1 for the Ar-Air plasma jet. Reactive oxygen species, such as hydroxyl radical and ozone, along with energy from excited species and plasma-generated electron transfers, are responsible for CPJ-assisted 4-NP breakdown. In summary, this study examines RONS production from Ar and Ar-Air plasma jets, evaluates their 4-NP removal efficacy, and investigates the biocompatibility of 4-NP that has been degraded after plasma treatment.


Assuntos
Argônio , Nitrofenóis , Gases em Plasma , Nitrofenóis/química , Argônio/química , Gases em Plasma/química , Ar , Espécies Reativas de Oxigênio/metabolismo , Poluentes Químicos da Água/toxicidade
2.
Free Radic Biol Med ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38763209

RESUMO

Non-small cell lung cancer (NSCLC), particularly lung adenocarcinoma (LUAD), significantly influences cancer-related mortality and is frequently considered by poor therapeutic responses due to genetic alterations. Cancer cells possess an inclination to develop resistance to individual treatment modalities, thus it is necessary to investigate several pathways simultaneously to obtain insights that will aid in the establishment of improved therapeutic approaches. Exploring regulated cell death (RCD) mechanisms offers promising avenues to augment immunotherapy by reshaping the tumor microenvironment (TME). Here, we investigated the prospective of microwave plasma-infused Nitric oxide water (NOW) to initiate immunogenic cell death (ICD) while concurrently modulating autophagy and ferroptosis signaling in LUAD-associated A549 cells. Plasma-treatment results in stable NO species nitrite/nitrate (NO2-/NO3-) in the water, altering its physiochemical properties. Analysis of ICD markers reveals increased expression of damage-associated molecular patterns (DAMPs) at both protein and mRNA levels post-NOW exposure. Intracellular reactive oxygen and nitrogen species (RONS) accumulation suggests NO-mediated mitochondrial dysfunction, triggering autophagy induction. Flow cytometry and western blotting confirm alterations in autophagy regulators Beclin-1 and SQSTM1. Furthermore, NOW treatment induces lipid peroxidation and upregulates ferroptosis-associated genes, as determined by qRT-PCR. Transmission electron microscopy (TEM) imaging reveals autophagosome formation and loss of cristae structures, corroborating the occurrence of autophagy and ferroptosis. Our findings propose that NOW may considered as as inducer of ICD and the stimulation of other RCD related protiend may enhance the anti-tumor immunogenicity.

3.
Sci Rep ; 14(1): 10882, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740792

RESUMO

The aim of this study was to evaluate the antimicrobial efficacy of an air gas soft jet CAP for its potential use in removing oral biofilms, given that plasma-based technologies have emerged as promising methods in periodontology. Two types of biofilms were developed, one by Streptococcus mutans UA 159 bacterial strain and the other by a complex mixture of saliva microorganisms isolated from a patient with periodontitis. This latter biofilm was characterized via Next Generation Sequencing to determine the main bacterial phyla. The CAP source was applied at a distance of 6 mm for different time points. A statistically significant reduction of both CFU count and XTT was already detected after 60 s of CAP treatment. CLSM analysis supported CAP effectiveness in killing the microorganisms inside the biofilm and in reducing the thickness of the biofilm matrix. Cytotoxicity tests demonstrated the possible use of CAP without important side effects towards human gingival fibroblasts cell line. The current study showed that CAP treatment was able to significantly reduce preformed biofilms developed by both S. mutans and microorganisms isolated by a saliva sample. Further studies should be conducted on biofilms developed by additional saliva donors to support the potential of this innovative strategy to counteract oral pathogens responsible for periodontal diseases.


Assuntos
Biofilmes , Gases em Plasma , Saliva , Streptococcus mutans , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Humanos , Gases em Plasma/farmacologia , Streptococcus mutans/efeitos dos fármacos , Streptococcus mutans/fisiologia , Saliva/microbiologia , Fibroblastos/microbiologia , Fibroblastos/efeitos dos fármacos , Periodontite/microbiologia , Periodontite/terapia , Linhagem Celular , Boca/microbiologia
4.
J Med Virol ; 96(5): e29655, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38727091

RESUMO

Viruses can spread through contaminated aerosols and contaminated surface materials, and effective disinfection techniques are essential for virus inactivation. Nonthermal plasma-generated reactive oxygen and nitrogen species can effectively inactivate the coronavirus. We aim to interpret the coronavirus inactivation level and mechanism of surface interaction with materials with and without dielectric barrier discharge (DBD) plasma treatment. Nonthermal plasma, particularly surface-type DBD plasma, can inactivate human coronavirus 229E (HCoV-229E) on porous (paper, wood, mask) and nonporous (plastic, stainless steel, glass, Cu) materials. Virus inactivation was analyzed using a 50% tissue culture infectivity dose (TCID50) using cell line, flow cytometry, and immunofluorescence. Surfaces contaminated with HCoV-229E were treated at different time intervals (0-5 h) with and without plasma exposure (natural decay in ambient air conditions). HCoV-229E persistence conformed to the following order: plastic > cover glass > stainless steel > mask > wood > paper > Cu with and without plasma exposure. HCoV-229E was more stable in plastic, cover glass, and stainless steel in 5 h, and the viable virus titer gradually decreased from its initial log10 order of 6.892 to 1.72, 1.53, and 1.32 TCID50/mL, respectively, under plasma exposure. No virus was observed in Cu after treatment for 5 h. The use of airflow, ambient nitrogen, and argon did not promote virus inactivation. Flow cytometry and immunofluorescence analysis demonstrated a low expression level of spike protein (fluorescence intensity) during plasma treatment and in E and M genes expression compared with the virus control.


Assuntos
Coronavirus Humano 229E , Gases em Plasma , Inativação de Vírus , Humanos , Coronavirus Humano 229E/efeitos dos fármacos , Coronavirus Humano 229E/fisiologia , Inativação de Vírus/efeitos dos fármacos , Gases em Plasma/farmacologia , Linhagem Celular , Porosidade , Desinfecção/métodos , Aço Inoxidável
5.
J Hazard Mater ; 472: 134562, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38743977

RESUMO

Nosocomial infections are a serious threat and difficult to cure due to rising antibiotic resistance in pathogens and biofilms. Direct exposure to cold atmospheric plasma (CAP) has been widely employed in numerous biological research endeavors. Nonetheless, plasma-treated liquids (PTLs) formulated with physiological solutions may offer additional benefits such as enhanced portability, and biocompatibility. Additionally, CAP-infused long-lived reactive oxygen and nitrogen species (RONS) such as nitrite (NO2-), nitrate (NO3-), and hydrogen peroxide (H2O2) can synergistically induce their antibacterial activity. Herein, we investigated those argon-plasma jet-treated liquids, including Ringer's lactate (RL), phosphate-buffered saline (PBS), and physiological saline, have significant antibacterial activity against nosocomial/gastrointestinal-causing pathogens, which might be due to ROS-mediated lipid peroxidation. Combining the conventional culture-based method with propidium iodide monoazide quantitative PCR (PMAxx™-qPCR) indicated that PTLs induce a minimal viable but non-culturable (VBNC) state and moderately affect culturable counts. Specifically, the PTL exposure resulted in pathogenicity dysfunction via controlling T3SS-related effector genes of S. enterica. Overall, this study provides insights into the effectiveness of PTLs for inducing ROS-mediated damage, controlling the virulence of diarrheagenic bacteria, and modulating homeostatic genes.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38451384

RESUMO

Tumor suppressor genes and proto-oncogenes comprise most of the complex genomic landscape associated with cancer, with a minimal number of genes exhibiting dual-context-dependent functions. The transcription factor cellular promoter 2 (TFCP2), a pivotal transcription factor encoded by the alpha globin transcription factor CP2 gene, is a constituent of the TFCP2/grainyhead family of transcription factors. While grainyhead members have been extensively studied for their crucial roles in developmental processes, embryogenesis, and multiple cancers, the TFCP2 subfamily has been relatively less explored. The molecular mechanisms underlying TFCP2's involvement in carcinogenesis are still unclear even though it is a desirable target for cancer treatment and a therapeutic marker. This comprehensive literature review summarizes the molecular functions of TFCP2, emphasizing its involvement in cancer pathophysiology, particularly in the epithelial-mesenchymal transition and metastasis. It highlights TFCP2's critical function as a regulatory target and explores its potential as a prognostic marker for survival and inflammation in carcinomas. Its ambiguous association with carcinomas underlines the urgent need for an in-depth understanding to facilitate the development of more efficacious targeted therapeutic modality and diagnostic tools. This study aims to elucidate the multifaceted effects of TFCP2 regulation, through a comprehensive integration of the existing knowledge in cancer therapeutics. Furthermore, the clinical relevance and the inherent challenges encountered in investigating its intricate role in cancer pathogenesis have been discussed in this review.

7.
Front Pharmacol ; 15: 1345340, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455958

RESUMO

This study assessed the medicinal properties of Euphorbia resinifera O. Berg (E. resinifera) and Euphorbia officinarum subsp echinus (Hook.f. and Coss.) Vindt (Euphorbia echinus, known for their pharmaceutical benefits. Extracts from their flowers, stems, propolis, and honey were examined for phenolic content, antioxidant, anti-inflammatory, and antibacterial activities. Total phenolic content (TPC), total flavonoid content (TFC), and total condensed tannin (TCC) were determined using specific methods. Antioxidant potential was assessed through various tests including DPPH, FRAP, ABTS, and Total antioxidant capacity. Anti-inflammatory effects were evaluated using phenol-induced ear edema in rats, while antibacterial activity was measured against Gram-positive (Staphylococcus aureus ATCC 6538) and Gram-negative (E. coli ATCC 10536) bacteria. Among the extracts, the aqueous propolis extract of E. resinifera demonstrated exceptional antioxidant capabilities, with low IC50 values for DPPH (0.07 ± 0.00 mg/mL) and ABTS (0.13 ± 0.00 mg/mL), as well as high TAC (176.72 ± 0.18 mg AA/mg extract) and FRAP (86.45 ± 1.45 mg AA/mg extract) values. Furthermore, the anti-inflammatory effect of E. resinifera propolis extracts surpassed that of indomethacin, yielding edema percentages of 3.92% and 11.33% for the aqueous and ethanolic extracts, respectively. Microbiological results indicated that the aqueous extract of E. resinifera flower exhibited the most potent inhibitory action against S. aureus, with an inhibition zone diameter (IZD) of 21.0 ± 0.00 mm and a minimum inhibitory concentration (MIC) of 3.125 mg/mL. Additionally, only E. resinifera honey displayed the ability to inhibit E. coli growth, with an inhibition zone diameter of 09.30 ± 0.03 mm and a MIC of 0.0433 mg/mL.

8.
Environ Pollut ; 347: 123700, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38452839

RESUMO

Emerging bio-contaminants (airborne viruses) exploits and manipulate host (human) metabolism to produce new viral particles, evading the host's immune defences and leading to infections. Non-thermal plasma, operating at atmospheric pressure and ambient temperature, is explored for virus inactivation, generating RONS that interact and denatures viral proteins. However, various factors affecting virus survival influence the efficacy of non-thermal plasma. Glucose analogue 2-DG, a metabolic modifier used in this study, disrupts the glycolysis pathway viruses rely on, creating an unfavourable environment for replication. Here, airborne HCoV-229E bio-contaminant was treated with plasma for inactivation, and the presence of RONS was analysed. Metabolically altered lung cells were subsequently exposed to the treated airborne viruses. Cytopathic effect, spike protein, and cell death were evaluated via flow cytometry and confocal microscopy, and CPRRs mediated antiviral gene expression was evaluated using PCR. Gas plasma-treated viruses led to reduced virus proliferation in unaltered lung cells, although few virus particles survived the exposure, as confirmed by biological assessment (cytopathic effects and live/dead staining). A combination approach of gas plasma-treated viruses and altered lung cells displayed drastic virus reduction compared to the control group, established through confocal microscopy and flow cytometry. Furthermore, altered lung cell enhances gene transcription responsible for innate immunity when exposed to the gas plasma-treated virus, thereby impeding airborne virus propagation. This study demonstrates the significance of a surface air gas plasma and metabolic alteration approach in enhancing genes targeted towards antiviral innate immunity and tackling outbreaks of emerging bio-contaminants of concerns (airborne viruses).


Assuntos
Coronavirus Humano 229E , Humanos , Coronavirus Humano 229E/genética , Inativação de Vírus , Pulmão , Imunidade Inata , Antivirais
9.
Drug Metab Pharmacokinet ; 54: 100536, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38081105

RESUMO

Nonthermal biocompatible plasma (NBP) is a promising option for improving medication absorption into the human skin. Currently, most plasma devices for cosmetics employ a floating-electrode plasma source for treating the skin. Human skin serves as the ground electrode in the floating-electrode plasma discharge, and discharge occurs between the skin and electrodes of the device. In this in vitro study, we aimed to evaluate the effect of NBP on the skin permeation of niacinamide. We have quantified the transdermal absorption rates of niacinamide in both untreated skin and skin treated with NBP for a duration of 10 s. The absorption of niacinamide for both without and with NBP treatment was observed until 12 h incubation time. Without plasma treatment, the human skin exhibited stable and low transdermal absorption of niacinamide up to 12 h. However, the NBP treatment significantly increased the transdermal absorption of niacinamide from 0.5 h to 6 h and continuously increased skin penetration over a duration of more than 12 h incubation period. The obtained results suggest that NBP-treated human skin showed a 60-fold higher penetration rate than non-treated skin. The increased penetration rate of niacinamide can be mainly attributed to plasmaporation subsequent to NBP treatment. The findings of this study demonstrate that NBP treatment results in remarkable skin permeability, making it a promising candidate for both cosmetic and pharmaceutical delivery applications.


Assuntos
Absorção Cutânea , Pele , Humanos , Administração Cutânea , Pele/metabolismo , Preparações Farmacêuticas/metabolismo , Niacinamida/metabolismo , Niacinamida/farmacologia , Permeabilidade
10.
J Biomol Struct Dyn ; 42(5): 2726-2737, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37177811

RESUMO

Medicinal plants are used from prehistoric time to cure various life-threatening bacterial diseases. Acorus calamus is an important medicinal plant widely used to cure gastrointestinal, respiratory, kidney and liver disorders. The objective of the current research was to investigate the interaction of major phytoconstituents of Acorus calamus with bacterial (6VJE) and fungal (1EA1) protein targets. Protein-ligand interactions were estimated using the AutoDock software, drug likeness was predicted by using the molinspiration server and toxicity was predicted with the swissADME and protox II servers. MD simulation of phytocompounds with the best profiles was done on the GROMACS software for 100 ns. Molecular docking results showed among all the selected major phytoconstituents, that ß-cadinene showed best binding interaction in complex with bacterial (6VJE) and fungal (1EA1) protein targets with binding energy -7.66 ± 0.1 and -7.73 ± 0.15 kcal mol-1, respectively. Drug likeness and toxicity predictions showed that ß-cadinene follows all rules of drug likeness and toxicity. MD simulation study revealed that ß-cadinene fit in binding pocket of bacterial and fungal targets and found to be stable throughout the duration of the simulation. Based on the observations from this in-silico study it is being proposed that ß-cadinene, a major phytocompound of Acorus calamus, can be considered for the treatment of bacterial and fungal infections since the study shows that it might be one of the compounds that contributes majorly to the plant's biological activity. This study needs in vitro and in vivo validation.Communicated by Ramaswamy H. Sarma.


Assuntos
Acorus , Anti-Infecciosos , Simulação de Acoplamento Molecular , Anti-Infecciosos/farmacologia , Simulação por Computador , Software
11.
Chemosphere ; 350: 140997, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128737

RESUMO

S. enterica, S. flexneri, and V. parahaemolyticus bacteria are globally recognized to cause severe diarrheal diseases, consisting of Type III Secretion System (T3SS) effectors that help in bacterial infection and virulence in host cells. This study investigates the properties of multi-electrode cylindrical DBD plasma-generated nitric oxide water (MCDBD-PG-NOW) treatment on the survival and virulence of S. enterica, S. flexneri, and V. parahaemolyticus bacteria. The Colony Forming Unit (CFU) assay, live/dead cell staining, lipid peroxidation assay, and bacteria morphological analysis showed substantial growth inhibition of bacteria. Moreover, to confirm the interaction of reactive nitrogen species (RNS) with bacterial membrane biotin switch assay, DAF-FM, and FTIR analysis were carried out, which established the formation of S-nitrosothiols in the cell membrane, intracellular accumulation of RNS, and changes in the cell composition post-PG-NOW treatment. Furthermore, the conventional culture-based method and a quantitative PCR using propidium monoazide showed minimal VBNC induction under similar condition. The efficiency of bacteria to adhere to mammalian colon cells was significantly reduced. In addition, the infection rate was also controlled by disrupting the virulent genes, leading to the collapse of the infection mechanism. This study provides insights into whether RNS generated from PG-NOW might be beneficial for preventing diarrheal infections.


Assuntos
Bactérias , Óxido Nítrico , Animais , Virulência , Bactérias/metabolismo , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo , Diarreia , Proteínas de Bactérias/metabolismo , Mamíferos/metabolismo
12.
Int J Mol Sci ; 24(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38068979

RESUMO

Diabetes is one of the most significant causes of death all over the world. This illness, due to abnormal blood glucose levels, leads to impaired wound healing and, as a result, foot ulcers. These ulcers cannot heal quickly in diabetic patients and may finally result in amputation. In recent years, different research has been conducted to heal diabetic foot ulcers: one of them is using cold atmospheric pressure plasma. Nowadays, cold atmospheric pressure plasma is highly regarded in medicine because of its positive effects and lack of side effects. These conditions have caused plasma to be considered a promising technology in medicine and especially diabetic wound healing because studies show that it can heal chronic wounds that are resistant to standard treatments. The positive effects of plasma are due to different reactive species, UV radiation, and electromagnetic fields. This work reviews ongoing cold atmospheric pressure plasma improvements in diabetic wound healing. It shows that plasma can be a promising tool in treating chronic wounds, including ones resulting from diabetes.


Assuntos
Diabetes Mellitus , Pé Diabético , Gases em Plasma , Humanos , Gases em Plasma/farmacologia , Gases em Plasma/uso terapêutico , Relevância Clínica , Cicatrização , Pé Diabético/tratamento farmacológico , Pressão Atmosférica , Diabetes Mellitus/tratamento farmacológico
13.
Bioorg Med Chem Lett ; 96: 129524, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37839713

RESUMO

Epicoccamide (EPC) is an O-d-mannosylated acyltetramic acid of Epicoccum origin and is a bolaamphiphilic fungal polyketide. EPC displays weak toxicity against Staphylococcus aureus and HeLa cell lines. The EPC biosynthetic gene cluster was previously identified in Epicoccum nigrum and knockout of the glycosyltransferase gene (epcB) abolished EPC production. EPC-aglycone was expected in the epcB knockout but was not found. This study demonstrates that extractive culture using the hydrophobic resin Diaion HP-20 resulted in the production of EPC-aglycone, which was isolated using chromatographic separation techniques, and its structural identity was substantiated by chemical analyses. EPC-aglycone displayed strong antibacterial activity against Staphylococcus aureus, with the minimal inhibitory concentration of 1 µg/mL (64 µg/mL for EPC). EPC-aglycone displayed higher levels of growth inhibition against HeLa cell line (the half inhibitory concentration, 19 µM) and WI-38 (15 µM) cell line than EPC (76 µM and 38 µM vs. HeLa and WI-38, respectively). The dose-response curve fit of growth inhibition indicated that EPC-aglycone adopted a shallow curve (low slope factor), which was different from that of EPC, suggesting that their cellular targets are distinct from each other. This study substantiates that the d-mannose attachment is the final step in EPC biosynthesis, showcasing a glycosylation-mediated modulation of the biological activity of simple acyltetramic acid. This study also highlights the usefulness of extractive cultures in mining cryptic microbial natural products.


Assuntos
Antibacterianos , Humanos , Células HeLa , Antibacterianos/farmacologia , Glicosilação
14.
Int J Mol Sci ; 24(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37762409

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been responsible for the initiation of the global pandemic since 2020. The virus spreads through contaminated air particles, fomite, and surface-contaminated porous (i.e., paper, wood, and masks) and non-porous (i.e., plastic, stainless steel, and glass) materials. The persistence of viruses on materials depends on porosity, adsorption, evaporation, isoelectric point, and environmental conditions, such as temperature, pH, and relative humidity. Disinfection techniques are crucial for preventing viral contamination on animated and inanimate surfaces. Currently, there are few effective methodologies for preventing SARS-CoV-2 and other coronaviruses without any side effects. Before infection can occur, measures must be taken to prevent the persistence of the coronavirus on the surfaces of both porous and non-porous inanimate materials. This review focuses on coronavirus persistence in surface materials (inanimate) and control measures. Viruses are inactivated through chemical and physical methods; the chemical methods particularly include alcohol, chlorine, and peroxide, whereas temperature, pH, humidity, ultraviolet irradiation (UV), gamma radiation, X-rays, ozone, and non-thermal, plasma-generated reactive oxygen and nitrogen species (RONS) are physical methods.

15.
Sci Rep ; 13(1): 15630, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730759

RESUMO

The focusing electrode plays an important role to reduce the electron beam trajectory with low dispersion and high brightness. This article summarizes the importance of the vertically aligned multi-walled carbon nanotube effect with the focusing electrode. First of all, the effect of electron beam trajectory is studied with the different heights, hole sizes, and applied voltage of the focusing electrode by the opera 3D simulation. The field emission electron beam spot is captured in the microchannel plate which helps to reduce the signal noise effect and damage of CNT tips by the joule heating effect. The high-dense bright spot is optimized at the focusing electrode hole size of 2 mm, and the height of 1 mm from the gate mesh electrode at the low bias voltage of - 200 V without the loss of current. The FWHM of the electron beam is calculated 0.9 mm with its opening angle of 0.9° which could be applicable in high-resolution multi-electron beam microscopy and nano-focused X-ray system technology.

16.
Chemosphere ; 337: 139363, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37422214

RESUMO

In this potential - study, the non - thermal atmospheric pressure plasma is utilized for the neutral - eradication of water contaminants. In the air ambient region, plasma induced reactive species, like as OH•, O (O2-), H2O2 (OH•+OH•) & NOx are performed for the oxidative and reductive transformation of AsIII (H3AsO3) to AsV (H2As O4-) & Fe3O4 (Fe3+) (C-GIO) to Fe2O3 (Fe2+). Whereas, the H2O2 & NOx are quantified maximum (max.) in water, which is 144.24 & 111.82 µM, respectively. In the absence of plasma and plasma with C-GIO, the AsIII was more eradicated, which is 64.01 and 100.00%. While, the C - GIO (catalyst) synergistic enhancement was performed and proved by the neutral - degradation of CR. Also, the AsV adsorbed on C-GIO adsorption capacity qmax and redox-adsorption yield were evaluated, which are 1.36 mg/g and 20.80 g/kWh, respectively. In this research, the waste material (GIO) was recycled, modified, and utilized for the neutral - eradication of water contaminates, which are organic (CR) and inorganic (AsIII) toxicants by the controlling of H and OH• under the interaction of plasma with catalyst (C-GIO). However, in this research, plasma can't adopt the acidic, which is controlled by the C-GIO via RONS. Moreover, in this eradicative study, various water pH alignments were performed, from neutral to acidic & neutral & base for toxicants removal. Furthermore, according to WHO norms, the arsenic level was reduced to 0.01 mg/l for environmental safety. The kinetic and isotherm studies were followed by the mono and multi-layer adsorption was performed on the surface of C - GIO beads, which is estimated by the fitting of rate limiting constant R2 ≈ 1. Furthermore, the C-GIO was examined several characterizations alignments, such as crystal, surface, functional, elemental composition, retention time, mass spectrum, and elemental oriented properties. Overall, the suggested hybrid system is an eco-friendly pathway for the natural - eradication of contaminants, such as organic and inorganic compounds via waste material (GIO) recycling, modification, oxidation, reduction, adsorption, degradation, and neutralization phenomenon.


Assuntos
Quitosana , Gases em Plasma , Poluentes Químicos da Água , Vermelho Congo , Peróxido de Hidrogênio/química , Água , Adsorção , Concentração de Íons de Hidrogênio
17.
Int J Mol Sci ; 24(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37298125

RESUMO

This special issue delivers an applied and basic platform for exchanging advanced approaches or research performance that link the plasma physics research in cell biology, cancer treatments, immunomodulation, stem cell differentiation, nanomaterial synthesis, and their applications, agriculture and food processing, microbial inactivation, water decontamination, and sterilization applications, including in vitro and in vivo research [...].


Assuntos
Gases em Plasma , Esterilização , Viabilidade Microbiana , Agricultura , Manipulação de Alimentos , Gases em Plasma/farmacologia
18.
Biochim Biophys Acta Rev Cancer ; 1878(4): 188915, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37196783

RESUMO

Despite the recent advances in cancer therapy, triple-negative breast cancers (TNBCs) are the most relapsing cancer sub-type. It is partly due to their propensity to develop resistance against the available therapies. An intricate network of regulatory molecules in cellular mechanisms leads to the development of resistance in tumors. Non-coding RNAs (ncRNAs) have gained widespread attention as critical regulators of cancer hallmarks. Existing research suggests that aberrant expression of ncRNAs modulates the oncogenic or tumor suppressive signaling. This can mitigate the responsiveness of efficacious anti-tumor interventions. This review presents a systematic overview of biogenesis and down streaming molecular mechanism of the subgroups of ncRNAs. Furthermore, it explains ncRNA-based strategies and challenges to target the chemo-, radio-, and immunoresistance in TNBCs from a clinical standpoint.


Assuntos
RNA não Traduzido , Neoplasias de Mama Triplo Negativas , Humanos , RNA não Traduzido/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Transdução de Sinais
19.
Pharmaceutics ; 15(5)2023 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-37242798

RESUMO

Novel biocompatible and efficient photothermal (PT) therapeutic materials for cancer treatment have recently garnered significant attention, owing to their effective ablation of cancer cells, minimal invasiveness, quick recovery, and minimal damage to healthy cells. In this study, we designed and developed calcium ion-doped magnesium ferrite nanoparticles (Ca2+-doped MgFe2O4 NPs) as novel and effective PT therapeutic materials for cancer treatment, owing to their good biocompatibility, biosafety, high near-infrared (NIR) absorption, easy localization, short treatment period, remote controllability, high efficiency, and high specificity. The studied Ca2+-doped MgFe2O4 NPs exhibited a uniform spherical morphology with particle sizes of 14.24 ± 1.32 nm and a strong PT conversion efficiency (30.12%), making them promising for cancer photothermal therapy (PTT). In vitro experiments showed that Ca2+-doped MgFe2O4 NPs had no significant cytotoxic effects on non-laser-irradiated MDA-MB-231 cells, confirming that Ca2+-doped MgFe2O4 NPs exhibited high biocompatibility. More interestingly, Ca2+-doped MgFe2O4 NPs exhibited superior cytotoxicity to laser-irradiated MDA-MB-231 cells, inducing significant cell death. Our study proposes novel, safe, high-efficiency, and biocompatible PT therapeutics for treating cancers, opening new vistas for the future development of cancer PTT.

20.
Microbes Infect ; 25(7): 105150, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37178787

RESUMO

Viral infection treatment is a difficult task due to its complex structure and metabolism. Additionally, viruses can alter the metabolism of host cells, mutate, and readily adjust to harsh environments. Coronavirus stimulates glycolysis, weakens mitochondrial activity, and impairs infected cells. In this study, we investigated the efficacy of 2-DG in inhibiting coronavirus-induced metabolic processes and antiviral host defense systems, which have not been explored so far. 2-Deoxy-d-glucose (2-DG), a molecule restricting substrate availability, has recently gained attention as a potential antiviral drug. The results revealed that 229E human coronavirus promoted glycolysis, producing a significant increase in the concentration of fluorescent 2-NBDG, a glucose analog, particularly in the infected host cells. The addition of 2-DG decreased its viral replication and suppressed infection-induced cell death and cytopathic effects, thereby improving the antiviral host defense response. It was also observed that administration of low doses of 2-DG inhibited glucose uptake, indicating that 2-DG consumption in virus-infected host cells was mediated by high-affinity glucose transporters, whose levels were amplified upon coronavirus infection. Our findings indicated that 2-DG could be a potential drug to improve the host defense system in coronavirus-infected cells.


Assuntos
Coronavirus , Desoxiglucose , Humanos , Desoxiglucose/farmacologia , Virulência , Glicólise , Glucose/metabolismo , Antivirais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA