Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 261(Pt 1): 129460, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237829

RESUMO

With the depletion of fossil fuels and growing environmental concerns, the modernized era of technology is in desperate need of sustainable and eco-friendly materials. The industrial sector surely has enough resources to produce cost-effective, renewable, reusable, and sustainable raw materials. The family of very porous solid materials known as aerogels has a variety of exceptional qualities, such as high porosity, high specific surface area, ultralow density, and superior thermal, acoustic, and dielectric properties. As a result, aerogels have the potential to be used for many different purposes, such as absorbents, supercapacitors, energy storage, and catalytic supports. Recently, cellulose nanofibril (CNF) aerogels have attracted remarkable attention for their large-scale utilization because of their high absorption capacity, low density, biodegradability, large surface area, high porosity, and biocompatibility. Recent advancements have confirmed that CNF-based hybrid aerogels can be proposed as the most privileged and promising novel material in various applications. This comprehensive review highlights the recent reports of the CNF-based hybrid aerogels, including their properties and frequent preparation approaches, in addition to their new applications in the areas of fire retardant, water and oil separation, supercapacitors, environmental, and CO2 capture. It is also assumed that this article will promote additional investigation and establish innovative capabilities to enhance novel CNF-based hybrid aerogels with new and exciting applications.


Assuntos
Celulose , Tecnologia , Porosidade , Géis
2.
Int J Biol Macromol ; 253(Pt 4): 127013, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37734517

RESUMO

Crosslinked hydrophilic polymers with high water absorption rates are known as superabsorbent polymers (SAPs). Most commercial superabsorbent polymers are made with acrylic acid, which is difficult to biodegrade. So, in this investigation, carboxymethyl cellulose (CMC) was utilized as a significant component in the synthesis of polysaccharide-based SAPs. Citric acid (CA) and starch were chosen as crosslinking agents because they are more eco-friendly, non-toxic, and biodegradable than traditional crosslinking agents. FTIR analysis revealed that the superabsorbent polymer product contains a crosslinked structure of CMC and starch with side chains that carry carboxylate functional groups. Superabsorbent weight loss and grafting data were satisfactorily studied using the TGA approach. Under optimum circumstances, the SAP2 water absorbency capacity in distilled water was 287.37 g.g-1 and SAP1 absorbency capacity in a solution containing 0.9 wt% NaCl was 52.18 g.g-1. Moreover, Schott's pseudo-second-order model was used to determine the kinetic swelling of the superabsorbent. The initial swelling rate of SAPs can be calculated using the Q∞ data acquired in the following order: SAP2 > SAP1 > SAP3 > SAP4 in distilled water and SAP1 > SAP2 > SAP3 > SAP4 in 0.9 wt% NaCl solution, respectively. The findings suggested that a small amount of citric acid introduced into the SAPs matrix could enhance the swelling rate of SAPs. The results of the cytotoxicity tests show that the extraction liquid of composite hydrogel fibers is less cytotoxic than the positive control. As well, SAP underwent in silico docking investigations on the DNA Gyrase enzyme. As the ligand is a monomer of SAP, it was a long chain of carbohydrate molecules with alcoholic groups, esters groups, and keto groups forms a strong binding interaction with DNA gyrase.


Assuntos
Carboximetilcelulose Sódica , Polímeros , Polímeros/química , Carboximetilcelulose Sódica/química , Cloreto de Sódio/química , Sódio , Amido/química , DNA Girase , Água/química
3.
Int J Biol Macromol ; 240: 124477, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37076072

RESUMO

Over the past few years, transition metal carbides, nitrides, and carbonitrides, commonly referred to as MXenes have been discovered and utilized quickly in a range of technical fields due to their distinctive and controlled characteristics. MXenes are a new class of two-dimensional (2D) materials that have found extensive use in a variety of fields, including energy storage, catalysis, sensing, biology, and other scientific disciplines. This is because of their exceptional mechanical and structural characteristics, metal electrical conductivity, and other outstanding physical and chemical properties. In this contribution, we review recent cellulose research advances and show that MXene hybrids are effective composites that benefit from cellulose superior water dispersibility and the electrostatic attraction between cellulose and MXene to prevent MXene accumulation and improve the composite's mechanical properties. Electrical, materials, chemical, mechanical, environmental, and biomedical engineering are all fields in which cellulose/MXene composites are used. These properties and applications-based reviews on MXene/cellulose composite, critically analyze the results and accomplishments in these fields and provide context for potential future research initiatives. It examines newly reported applications for cellulose nanocomposites assisted by MXene. To support their development and future applications, perspectives and difficulties are suggested in the conclusion.


Assuntos
Bioengenharia , Engenharia Biomédica , Catálise , Celulose
4.
Int J Biol Macromol ; 233: 123551, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36740107

RESUMO

Cellulose is a plentiful, biodegradable, renewable, and natural polymer in the world that can be widely utilized in the production of polymer nanocomposites. Cellulose is developed in nanomaterials owing to its remarkable inherent features of low density, non-toxicity, and affordability, as well as the amazing sample characteristics of strength and thermal stability. Recently, there has been a lot of interest in organic-inorganic composites because of their adaptable qualities. Cellulose and semiconductors have exciting properties, and new combinations of both materials may result in efficient functional hybrid composites with distinct properties. Lately, a huge study was reported on cellulose and semiconductor-based nanocomposites. In this review, we summarize the present research development in the preparation methods, structure, features, and possible applications of multifunctional cellulose and semiconductor-based nanocomposites. The cellulose/semiconductor based nanocomposites have massive potential applications in the areas of photodegradation of organic dyes, hydrogen production, metal removal, biomedical, and sensor applications. It is also assumed that this article will promote additional investigation and will establish innovative capabilities to enhance novel cellulose and semiconductor based nanocomposites with new and exciting applications.


Assuntos
Celulose , Nanocompostos , Celulose/química , Polímeros/química , Nanocompostos/química , Hibridização Genética , Semicondutores
5.
Polymers (Basel) ; 14(9)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35567042

RESUMO

A new reactive urethane-silicone softener was developed to provide a soft touch to cotton knit fabrics with improved durability to washing and dimensional stability. The reactive urethane-silicone softener consisted of an amino silicone softener and a blocked isocyanate, which can crosslink and react with cellulose surfaces. The activated isocyanate from the blocked isocyanate reacted with the amino silicone softener by heat treatment at 150 °C for 30 min. The mechanical properties of the cotton knit fabrics treated with the urethane-silicone softener were evaluated using a Kawabata Evaluation System-Fabrics (KES-FB) system. The cotton knit fabrics treated with the urethane-silicone softener showed excellent elasticity, flexibility and shear recovery as well as excellent recovery against bending deformation, and soft and smooth surface characteristics with a small coefficient of friction that were maintained even after washing 20 times.

6.
Sci Rep ; 12(1): 7780, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35546596

RESUMO

A strain sensor characterized by elasticity has recently been studied in various ways to be applied to monitoring humans or robots. Here, 4 types of 3D-printed auxetic lattice structures using thermoplastic polyurethane as raw material were characterized: truss and honeycomb with positive Poisson's ratio and chiral truss and re-entrant with negative Poisson's ratio. Each structure was fabricated as a flexible and stable strain sensor by coating graphene through a dip-coating process. The fabricated auxetic structures have excellent strength, flexibility, and electrical conductivity desirable for a strain sensor and detect a constant change in resistance at a given strain. The 3D-printed auxetic lattice 4 type structures coated with CWPU/Graphene suggest potential applications of multifunctional strain sensors under deformation.


Assuntos
Grafite , Elasticidade , Condutividade Elétrica , Humanos , Poliuretanos , Impressão Tridimensional
7.
Polymers (Basel) ; 12(9)2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32824965

RESUMO

We demonstrate a sequential electrospinning process involving the adsorption of ZnO nanoparticles on the surface of bio-based polyester, which is a terpolyester of a renewable isosorbide (ISB) monomer, ethylene glycol, 1,4-cyclohexane dimethanol, and terephthalic acid, the-so-called PEICT, to fabricate stable ZnO nanoparticles/PEICT nanofiber composite system protected with other two PEICT nanofiber mats. We found that post-electrospinning treatment with a particular solvent was effective to remove a residual solvent molecule in the PEICT nanofibers, which induced significant aggregation of the nanoparticles, leading to non-uniform distribution of the particles on the surface. Sequential electrospinning of the PEICT solution to sandwich ZnO nanoparticle-decorated PEICT nanofiber mat enabled to attain protected the inorganic/organic hybrid nanofiber mat, improving the long-term stability, and the reproducibility of the inorganic particles decorated nanofiber fabrication.

8.
Carbohydr Polym ; 234: 115881, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32070504

RESUMO

This work reports the fabrication of a thiol-functionalized cellulose nanofiber membrane that can effectively adsorb heavy metal ions. Thiol was incorporated onto the surface of cellulose nanofibers, which were fabricated by the deacetylation of electrospun cellulose acetate nanofibers and subsequent esterification of a thiol precursor molecule. Adsorption mechanism was investigated using adsorption isotherms. Adsorption capacity as a function of adsorbate concentration was described well with Langmuir isotherm, suggesting that metal ions form a surface monolayer with a homogenously distributed adsorption energy. Maximum adsorption capacities in the Langmuir isotherm for Cu(II), Cd(II), and Pb(II) ions were 49.0, 45.9, and 22.0 mg·g-1, respectively. The time-dependent adsorption capacities followed a pseudo-second-order kinetic model, suggesting that chemisorption of each doubly charged metal ion occurs with two thiol groups on the surface. These results highlight the significance of surface functionality on biocompatible, nontoxic, and sustainable cellulose materials to expand their potential and applicability towards water remediation applications.

9.
J Nanosci Nanotechnol ; 18(10): 7110-7114, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29954542

RESUMO

In this study, pyrolyzed photoresist films (PPFs) were prepared using commercial SU8 photoresist by proton irradiation and pyrolysis. SU8 thin films were irradiated with high-energy proton ions and then pyrolyzed in a tube furnace at 1000 °C under inert atmosphere. The carbonization yield of the PPFs increased with an increasing fluence due to the formation of more crosslinked network structures at a higher fluence. The electrical resistance decreased with an increasing fluence due to the higher remaining thickness and carbonization yield at a higher fluence. Therefore, the PPFs prepared at 1 × 1016 ions/cm2 showed the maximum temperature of 150 °C at 20 V and a high electric power efficiency of 1.57 mW/°C.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA