Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 10(11)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36366412

RESUMO

The journal retracts the article "Expression of SARS-CoV-2 Spike Protein Receptor Binding Domain on Recombinant B. subtilis on Spore Surface: A Potential COVID-19 Oral Vaccine Candidate"[...].

2.
Vaccines (Basel) ; 10(7)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35891178

RESUMO

The coronavirus diseases 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections have threatened the world for more than 2 years. Multiple vaccine candidates have been developed and approved for emergency use by specific markets, but multiple doses are required to maintain the antibody level. Preliminary safety and immunogenicity data about an oral dose vaccine candidate using recombinant Bacillus subtilis in healthy adults were reported previously from an investigator-initiated trial in Hong Kong. Additional data are required in order to demonstrate the safety and efficacy of the candidate as a heterologous booster in vaccinated recipients. In an ongoing, placebo-controlled, observer-blinded, fixed dose, investigator-initiated trial conducted in the Macau, we randomly assigned healthy adults, 21 to 62 years of age to receive either placebo or a Bacillus subtilis oral dose vaccine candidate, which expressed the spike protein receptor binding domain of SARS-CoV-2 on the spore surface. The primary outcome was safety (e.g., local and systemic reactions and adverse events); immunogenicity was a secondary outcome. For both the active vaccine and placebo, participants received three courses in three consecutive days. A total of 16 participants underwent randomization: 9 participants received vaccine and 7 received placebo. No observable local or systemic side-effect was reported. In both younger and older adults receiving placebo, the neutralizing antibody levels were gradually declining, whereas the participants receiving the antibody booster showed an increase in neutralizing antibody level.

3.
Vaccines (Basel) ; 10(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35062663

RESUMO

Various types of vaccines, such as mRNA, adenovirus, and inactivated virus by injection, have been developed to prevent SARS-CoV-2 infection. Although some of them have already been approved under the COVID-19 pandemic, various drawbacks, including severe side effects and the requirement for sub-zero temperature storage, may hinder their applications. Bacillus subtilis (B. subtilis) is generally recognized as a safe and endotoxin-free Gram-positive bacterium that has been extensively employed as a host for the expression of recombinant proteins. Its dormant spores are extraordinarily resistant to the harsh environment in the gastrointestinal tract. This feature makes it an ideal carrier for oral administration in resisting this acidic environment and for release in the intestine. In this study, an engineered B. subtilis spore expressing the SARS-CoV-2 spike protein receptor binding domain (sRBD) on the spore surface was developed. In a pilot test, no adverse health event was observed in either mice or healthy human volunteers after three oral courses of B. subtilis spores. Significant increases in neutralizing antibody against sRBD, in both mice and human volunteers, after oral administration were also found. These findings may enable the further clinical developments of B. subtilis spores as an oral vaccine candidate against COVID-19 in the future.

4.
Appl Microbiol Biotechnol ; 104(9): 3921-3934, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32144472

RESUMO

L-Arginine (L-Arg) depletion has attracted great attention in cancer therapy. Although two types of arginine-depleting enzymes, arginine deiminase (ADI) and human arginase I, are undergoing clinical trials, random site of PEGylation, low efficacy of heavy metal as co-factor, and immunogenicity limit the performance of these drugs and cause difficulty in a homogeneous production. Here we screened ten catalytic metal ions and have successfully produced a site-specific mono-PEGylated human arginase I mutant by conjugating the Cys45 residue to PEG-maleimide to minimize the decrease in activity and produce a homogeneous product. The catalytic efficiency trend of metal ion-enriched human arginase I mutant (HAI) was Co2+ > Ni2+ ≫ Mn2+. The overall kcat/KM values of Co-HAI and Ni-HAI were higher than Mn-HAI by ~ 8.7- and ~ 5.2-folds, respectively. Moreover, the results of enzyme kinetics and circular dichroism spectrometry demonstrated that the 20 or 40 kDa linear and branched PEG attached on the HAI surface did not affect the enzyme activity and the protein secondary structures. In vitro studies showed that both Co-HAI-PEG20L and Ni-HAI-PEG20L inhibited the growth of eight types of cancer cell lines. The pharmacodynamic study in mice demonstrated that the i.p. administration of Co-HAI-PEG20L at 13 mg/kg and Ni-HAI-PEG20L at 15 mg/kg was able to maintain a L-Arg level below its detection limit for over 120 h after one injection. The body weights of mice could return to normal levels within 5 days after injection, showing that the doses were well-tolerated. Therefore, both the Ni-HAI-PEG20L and Co-HAI-PEG20L are promising candidates for cancer therapy. KEY POINTS: • Mono-PEGylation applied on human arginase I mutant (HAI) successfully. • The catalytic efficiency of Co- and Ni-enriched HAI was higher than the wild type. • At least eight types of cancer cell lines were inhibited by Co- and Ni-HAI-PEG20L. • Co- and Ni-HAI-PEG20L were able to achieve weekly depletion of L-Arg. Graphical abstract.


Assuntos
Arginase/genética , Arginase/uso terapêutico , Arginina/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Engenharia de Proteínas , Animais , Linhagem Celular Tumoral , Humanos , Íons , Metais , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Estrutura Secundária de Proteína
5.
Commun Chem ; 3(1): 67, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-36703438

RESUMO

Selective modification of the N-terminus of peptides and proteins is a promising strategy for single site modification methods. Here we report N-terminal selective modification of peptides and proteins by using 2-ethynylbenzaldehydes (2-EBA) for the production of well-defined bioconjugates. After reaction screening with a series of 2-EBA, excellent N-terminal selectivity is achieved by the reaction in slightly acidic phosphate-buffered saline using 2-EBA with electron-donating substituents. Selective modification of a library of peptides XSKFR (X = either one of 20 natural amino acids) by 2-ethynyl-4-hydroxy-5-methoxybenzaldehyde (2d) results in good-to-excellent N-terminal selectivity in peptides (up to >99:1). Lysozyme, ribonuclease A and a therapeutic recombinant Bacillus caldovelox arginase mutant (BCArg mutant) are N-terminally modified using alkyne- and fluorescein-linked 2-EBA. Alkyne-linked BCArg mutant is further modified by rhodamine azide via copper(I)-catalyzed [3 + 2] cycloaddition indicating that the reaction has high functional group compatibility. Moreover, the BCArg mutant modified by 2-ethynyl-5-methoxybenzaldehyde (2b) exhibits comparable activity in enzymatic and cytotoxic assays with the unmodified one.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA