Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38605641

RESUMO

Simulation of RNA-seq reads is critical in the assessment, comparison, benchmarking and development of bioinformatics tools. Yet the field of RNA-seq simulators has progressed little in the last decade. To address this need we have developed BEERS2, which combines a flexible and highly configurable design with detailed simulation of the entire library preparation and sequencing pipeline. BEERS2 takes input transcripts (typically fully length messenger RNA transcripts with polyA tails) from either customizable input or from CAMPAREE simulated RNA samples. It produces realistic reads of these transcripts as FASTQ, SAM or BAM formats with the SAM or BAM formats containing the true alignment to the reference genome. It also produces true transcript-level quantification values. BEERS2 combines a flexible and highly configurable design with detailed simulation of the entire library preparation and sequencing pipeline and is designed to include the effects of polyA selection and RiboZero for ribosomal depletion, hexamer priming sequence biases, GC-content biases in polymerase chain reaction (PCR) amplification, barcode read errors and errors during PCR amplification. These characteristics combine to make BEERS2 the most complete simulation of RNA-seq to date. Finally, we demonstrate the use of BEERS2 by measuring the effect of several settings on the popular Salmon pseudoalignment algorithm.


Assuntos
Genoma , RNA , RNA-Seq , Análise de Sequência de RNA , Simulação por Computador , RNA/genética , Sequenciamento de Nucleotídeos em Larga Escala
2.
bioRxiv ; 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37162982

RESUMO

Simulation of RNA-seq reads is critical in the assessment, comparison, benchmarking, and development of bioinformatics tools. Yet the field of RNA-seq simulators has progressed little in the last decade. To address this need we have developed BEERS2, which combines a flexible and highly configurable design with detailed simulation of the entire library preparation and sequencing pipeline. BEERS2 takes input transcripts (typically fully-length mRNA transcripts with polyA tails) from either customizable input or from CAMPAREE simulated RNA samples. It produces realistic reads of these transcripts as FASTQ, SAM, or BAM formats with the SAM or BAM formats containing the true alignment to the reference genome. It also produces true transcript-level quantification values. BEERS2 combines a flexible and highly configurable design with detailed simulation of the entire library preparation and sequencing pipeline and is designed to include the effects of polyA selection and RiboZero for ribosomal depletion, hexamer priming sequence biases, GC-content biases in PCR amplification, barcode read errors, and errors during PCR amplification. These characteristics combine to make BEERS2 the most complete simulation of RNA-seq to date. Finally, we demonstrate the use of BEERS2 by measuring the effect of several settings on the popular Salmon pseudoalignment algorithm.

4.
Cell Rep ; 38(8): 110417, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35196489

RESUMO

Androgen receptor (AR) signaling is the central driver of prostate cancer across disease states. While androgen deprivation therapy (ADT) is effective in the initial treatment of prostate cancer, resistance to ADT or to next-generation androgen pathway inhibitors invariably arises, most commonly through the re-activation of the AR axis. Thus, orthogonal approaches to inhibit AR signaling in advanced prostate cancer are essential. Here, via genome-scale CRISPR-Cas9 screening, we identify protein arginine methyltransferase 1 (PRMT1) as a critical mediator of AR expression and signaling. PRMT1 regulates the recruitment of AR to genomic target sites and the inhibition of PRMT1 impairs AR binding at lineage-specific enhancers, leading to decreased expression of key oncogenes, including AR itself. In addition, AR-driven prostate cancer cells are uniquely susceptible to combined AR and PRMT1 inhibition. Our findings implicate PRMT1 as a key regulator of AR output and provide a preclinical framework for co-targeting of AR and PRMT1 in advanced prostate cancer.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/uso terapêutico , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias de Próstata Resistentes à Castração/genética , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais
5.
Nat Commun ; 12(1): 7139, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34880227

RESUMO

Amplification and overexpression of the SOX2 oncogene represent a hallmark of squamous cancers originating from diverse tissue types. Here, we find that squamous cancers selectively amplify a 3' noncoding region together with SOX2, which harbors squamous cancer-specific chromatin accessible regions. We identify a single enhancer e1 that predominantly drives SOX2 expression. Repression of e1 in SOX2-high cells causes collapse of the surrounding enhancers, remarkable reduction in SOX2 expression, and a global transcriptional change reminiscent of SOX2 knockout. The e1 enhancer is driven by a combination of transcription factors including SOX2 itself and the AP-1 complex, which facilitates recruitment of the co-activator BRD4. CRISPR-mediated activation of e1 in SOX2-low cells is sufficient to rebuild the e1-SOX2 loop and activate SOX2 expression. Our study shows that squamous cancers selectively amplify a predominant enhancer to drive SOX2 overexpression, uncovering functional links among enhancer activation, chromatin looping, and lineage-specific copy number amplifications of oncogenes.


Assuntos
Carcinoma de Células Escamosas/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias de Células Escamosas/genética , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Sistemas CRISPR-Cas , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Cromatina , Elementos Facilitadores Genéticos , Epigenômica , Feminino , Técnicas de Inativação de Genes , Xenoenxertos , Humanos , Oncogenes/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
J Clin Invest ; 131(18)2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34523614

RESUMO

Herculean efforts by the Wellcome Sanger Institute, the National Cancer Institute, and the National Human Genome Research Institute to sequence thousands of tumors representing all major cancer types have yielded more than 700 genes that contribute to neoplastic growth when mutated, amplified, or deleted. While some of these genes (now included in the COSMIC Cancer Gene Census) encode proteins previously identified in hypothesis-driven experiments (oncogenic transcription factors, protein kinases, etc.), additional classes of cancer drivers have emerged, perhaps none more surprisingly than RNA-binding proteins (RBPs). Over 40 RBPs responsible for virtually all aspects of RNA metabolism, from synthesis to degradation, are recurrently mutated in cancer, and just over a dozen are considered major cancer drivers. This Review investigates whether and how their RNA-binding activities pertain to their oncogenic functions. Focusing on several well-characterized steps in RNA metabolism, we demonstrate that for virtually all cancer-driving RBPs, RNA processing activities are either abolished (the loss-of-function phenotype) or carried out with low fidelity (the LoFi phenotype). Conceptually, this suggests that in normal cells, RBPs act as gatekeepers maintaining proper RNA metabolism and the "balanced" proteome. From the practical standpoint, at least some LoFi phenotypes create therapeutic vulnerabilities, which are beginning to be exploited in the clinic.


Assuntos
Mutação , Neoplasias/genética , Neoplasias/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transporte Ativo do Núcleo Celular , Bases de Dados Genéticas , Humanos , Redes e Vias Metabólicas/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Modelos Biológicos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fenótipo , Biossíntese de Proteínas , Processamento Pós-Transcricional do RNA , Splicing de RNA/genética , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , Transcrição Gênica
7.
Cancer Res ; 80(24): 5464-5477, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33115806

RESUMO

Activation of transcription factors is a key driver event in cancer. We and others have recently reported that the Krüppel-like transcription factor KLF5 is activated in multiple epithelial cancer types including squamous cancer and gastrointestinal adenocarcinoma, yet the functional consequences and the underlying mechanisms of this activation remain largely unknown. Here we demonstrate that activation of KLF5 results in strongly selective KLF5 dependency for these cancer types. KLF5 bound lineage-specific regulatory elements and activated gene expression programs essential to cancer cells. HiChIP analysis revealed that multiple distal KLF5 binding events cluster and synergize to activate individual target genes. Immunoprecipitation-mass spectrometry assays showed that KLF5 interacts with other transcription factors such as TP63 and YAP1, as well as the CBP/EP300 acetyltransferase complex. Furthermore, KLF5 guided the CBP/EP300 complex to increase acetylation of H3K27, which in turn enhanced recruitment of the bromodomain protein BRD4 to chromatin. The 3D chromatin architecture aggregated KLF5-dependent BRD4 binding to activate polymerase II elongation at KLF5 target genes, which conferred a transcriptional vulnerability to proteolysis-targeting chimera-induced degradation of BRD4. Our study demonstrates that KLF5 plays an essential role in multiple epithelial cancers by activating cancer-related genes through 3D chromatin loops, providing an evidence-based rationale for targeting the KLF5 pathway. SIGNIFICANCE: An integrative 3D genomics methodology delineates mechanisms underlying the function of KLF5 in multiple epithelial cancers and suggests potential strategies to target cancers with aberrantly activated KLF5.


Assuntos
Cromatina/metabolismo , Células Epiteliais/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Neoplasias Epiteliais e Glandulares/metabolismo , Transcrição Gênica/genética , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Linhagem da Célula/genética , Proliferação de Células/genética , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Fatores de Transcrição Kruppel-Like/genética , Neoplasias Epiteliais e Glandulares/patologia , Fenótipo , Regiões Promotoras Genéticas , Ligação Proteica/genética
8.
Mol Cancer Res ; 18(4): 574-584, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31862696

RESUMO

Genomic analysis of lung adenocarcinomas has revealed that the MGA gene, which encodes a heterodimeric partner of the MYC-interacting protein MAX, is significantly mutated or deleted in lung adenocarcinomas. Most of the mutations are loss of function for MGA, suggesting that MGA may act as a tumor suppressor. Here, we characterize both the molecular and cellular role of MGA in lung adenocarcinomas and illustrate its functional relevance in the MYC pathway. Although MGA and MYC interact with the same binding partner, MAX, and recognize the same E-box DNA motif, we show that the molecular function of MGA appears to be antagonistic to that of MYC. Using mass spectrometry-based affinity proteomics, we demonstrate that MGA interacts with a noncanonical PCGF6-PRC1 complex containing MAX and E2F6 that is involved in gene repression, while MYC is not part of this MGA complex, in agreement with previous studies describing the interactomes of E2F6 and PCGF6. Chromatin immunoprecipitation-sequencing and RNA sequencing assays show that MGA binds to and represses genes that are bound and activated by MYC. In addition, we show that, as opposed to the MYC oncoprotein, MGA acts as a negative regulator for cancer cell proliferation. Our study defines a novel MYC/MAX/MGA pathway, in which MYC and MGA play opposite roles in protein interaction, transcriptional regulation, and cellular proliferation. IMPLICATIONS: This study expands the range of key cancer-associated genes whose dysregulation is functionally equivalent to MYC activation and places MYC within a linear pathway analogous to cell-cycle or receptor tyrosine kinase/RAS/RAF pathways in lung adenocarcinomas.


Assuntos
Adenocarcinoma de Pulmão/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Células A549 , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Células HEK293 , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Proteínas Proto-Oncogênicas c-myc/genética
9.
Mol Cancer Res ; 17(4): 1002-1012, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30635434

RESUMO

Lung adenocarcinomas are characterized by mutations in the receptor tyrosine kinase (RTK)/Ras/Raf pathway, with up to 75% of cases containing mutations in known driver genes. However, the driver alterations in the remaining cases are yet to be determined. Recent exome sequencing analysis has identified SOS1, encoding a guanine nucleotide exchange factor, as significantly mutated in lung adenocarcinomas lacking canonical oncogenic RTK/Ras/Raf pathway mutations. Here, we demonstrate that ectopic expression of lung adenocarcinoma-derived mutants of SOS1 induces anchorage-independent cell growth in vitro and tumor formation in vivo. Biochemical experiments suggest that these mutations lead to overactivation of the Ras pathway, which can be suppressed by mutations that disrupt either the Ras-GEF or putative Rac-GEF activity of SOS1. Transcriptional profiling reveals that the expression of mutant SOS1 leads to the upregulation of MYC target genes and genes associated with Ras transformation. Furthermore, we demonstrate that an AML cancer cell line harboring a lung adenocarcinoma-associated mutant SOS1 is dependent on SOS1 for survival and is also sensitive to MEK inhibition. Our work provides experimental evidence for the role of SOS1 as an oncogene and suggests a possible therapeutic strategy to target SOS1-mutated cancers. IMPLICATIONS: This study demonstrates that SOS1 mutations found in lung adenocarcinoma are oncogenic and that MEK inhibition may be a therapeutic avenue for the treatment of SOS1-mutant cancers.


Assuntos
Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/genética , Proteína SOS1/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Animais , Perfilação da Expressão Gênica , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Mutação , Células NIH 3T3 , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteína SOS1/metabolismo , Transfecção , Regulação para Cima , Proteínas ras/genética , Proteínas ras/metabolismo
10.
Nat Commun ; 9(1): 5450, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30575730

RESUMO

Systematic exploration of cancer cell vulnerabilities can inform the development of novel cancer therapeutics. Here, through analysis of genome-scale loss-of-function datasets, we identify adenosine deaminase acting on RNA (ADAR or ADAR1) as an essential gene for the survival of a subset of cancer cell lines. ADAR1-dependent cell lines display increased expression of interferon-stimulated genes. Activation of type I interferon signaling in the context of ADAR1 deficiency can induce cell lethality in non-ADAR1-dependent cell lines. ADAR deletion causes activation of the double-stranded RNA sensor, protein kinase R (PKR). Disruption of PKR signaling, through inactivation of PKR or overexpression of either a wildtype or catalytically inactive mutant version of the p150 isoform of ADAR1, partially rescues cell lethality after ADAR1 loss, suggesting that both catalytic and non-enzymatic functions of ADAR1 may contribute to preventing PKR-mediated cell lethality. Together, these data nominate ADAR1 as a potential therapeutic target in a subset of cancers.


Assuntos
Adenosina Desaminase/genética , Neoplasias Pulmonares/genética , Proteínas de Ligação a RNA/genética , eIF-2 Quinase/metabolismo , Células A549 , Deleção de Genes , Regulação Neoplásica da Expressão Gênica , Humanos , Helicase IFIH1 Induzida por Interferon/metabolismo , Interferons/metabolismo , Fosforilação
11.
Elife ; 72018 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-30059005

RESUMO

Alternative splicing of mRNA precursors represents a key gene expression regulatory step and permits the generation of distinct protein products with diverse functions. In a genome-scale expression screen for inducers of the epithelial-to-mesenchymal transition (EMT), we found a striking enrichment of RNA-binding proteins. We validated that QKI and RBFOX1 were necessary and sufficient to induce an intermediate mesenchymal cell state and increased tumorigenicity. Using RNA-seq and eCLIP analysis, we found that QKI and RBFOX1 coordinately regulated the splicing and function of the actin-binding protein FLNB, which plays a causal role in the regulation of EMT. Specifically, the skipping of FLNB exon 30 induced EMT by releasing the FOXC1 transcription factor. Moreover, skipping of FLNB exon 30 is strongly associated with EMT gene signatures in basal-like breast cancer patient samples. These observations identify a specific dysregulation of splicing, which regulates tumor cell plasticity and is frequently observed in human cancer.


Assuntos
Processamento Alternativo/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Filaminas/genética , Células-Tronco Mesenquimais/metabolismo , Animais , Sequência de Bases , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Éxons/genética , Feminino , Filaminas/metabolismo , Regulação Neoplásica da Expressão Gênica , Genoma Humano , Humanos , Receptores de Hialuronatos/metabolismo , Camundongos Nus , Proteínas de Neoplasias/metabolismo , Fases de Leitura Aberta/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Reprodutibilidade dos Testes
12.
Nat Genet ; 50(7): 937-943, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29955178

RESUMO

Functional redundancy shared by paralog genes may afford protection against genetic perturbations, but it can also result in genetic vulnerabilities due to mutual interdependency1-5. Here, we surveyed genome-scale short hairpin RNA and CRISPR screening data on hundreds of cancer cell lines and identified MAGOH and MAGOHB, core members of the splicing-dependent exon junction complex, as top-ranked paralog dependencies6-8. MAGOHB is the top gene dependency in cells with hemizygous MAGOH deletion, a pervasive genetic event that frequently occurs due to chromosome 1p loss. Inhibition of MAGOHB in a MAGOH-deleted context compromises viability by globally perturbing alternative splicing and RNA surveillance. Dependency on IPO13, an importin-ß receptor that mediates nuclear import of the MAGOH/B-Y14 heterodimer9, is highly correlated with dependency on both MAGOH and MAGOHB. Both MAGOHB and IPO13 represent dependencies in murine xenografts with hemizygous MAGOH deletion. Our results identify MAGOH and MAGOHB as reciprocal paralog dependencies across cancer types and suggest a rationale for targeting the MAGOHB-IPO13 axis in cancers with chromosome 1p deletion.


Assuntos
Cromossomos Humanos Par 1 , Neoplasias/genética , Animais , Linhagem Celular Tumoral , Núcleo Celular/genética , Éxons/genética , Feminino , Deleção de Genes , Células HEK293 , Humanos , Carioferinas/genética , Camundongos , Camundongos Nus , Proteínas Nucleares/genética , Splicing de RNA/genética , RNA Interferente Pequeno/genética
13.
Cancer Discov ; 8(1): 108-125, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28963353

RESUMO

The Krüppel-like family of transcription factors plays critical roles in human development and is associated with cancer pathogenesis. Krüppel-like factor 5 gene (KLF5) has been shown to promote cancer cell proliferation and tumorigenesis and to be genomically amplified in cancer cells. We recently reported that the KLF5 gene is also subject to other types of somatic coding and noncoding genomic alterations in diverse cancer types. Here, we show that these alterations activate KLF5 by three distinct mechanisms: (i) Focal amplification of superenhancers activates KLF5 expression in squamous cell carcinomas; (ii) Missense mutations disrupt KLF5-FBXW7 interactions to increase KLF5 protein stability in colorectal cancer; (iii) Cancer type-specific hotspot mutations within a zinc-finger DNA binding domain of KLF5 change its DNA binding specificity and reshape cellular transcription. Utilizing data from CRISPR/Cas9 gene knockout screening, we reveal that cancer cells with KLF5 overexpression are dependent on KLF5 for their proliferation, suggesting KLF5 as a putative therapeutic target.Significance: Our observations, together with previous studies that identified oncogenic properties of KLF5, establish the importance of KLF5 activation in human cancers, delineate the varied genomic mechanisms underlying this occurrence, and nominate KLF5 as a putative target for therapeutic intervention in cancer. Cancer Discov; 8(1); 108-25. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 1.


Assuntos
Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Mutação , Oncogenes , Proliferação de Células/fisiologia , Humanos
14.
Elife ; 62017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28177281

RESUMO

Genomic instability is a hallmark of human cancer, and results in widespread somatic copy number alterations. We used a genome-scale shRNA viability screen in human cancer cell lines to systematically identify genes that are essential in the context of particular copy-number alterations (copy-number associated gene dependencies). The most enriched class of copy-number associated gene dependencies was CYCLOPS (Copy-number alterations Yielding Cancer Liabilities Owing to Partial losS) genes, and spliceosome components were the most prevalent. One of these, the pre-mRNA splicing factor SF3B1, is also frequently mutated in cancer. We validated SF3B1 as a CYCLOPS gene and found that human cancer cells harboring partial SF3B1 copy-loss lack a reservoir of SF3b complex that protects cells with normal SF3B1 copy number from cell death upon partial SF3B1 suppression. These data provide a catalog of copy-number associated gene dependencies and identify partial copy-loss of wild-type SF3B1 as a novel, non-driver cancer gene dependency.


Assuntos
Dosagem de Genes , Neoplasias/genética , Neoplasias/patologia , Fosfoproteínas/genética , Fatores de Processamento de RNA/genética , Linhagem Celular Tumoral , Humanos
15.
Oncotarget ; 7(19): 26926-34, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-27095570

RESUMO

Oncogene inactivation in both clinical targeted therapies and conditional transgenic mouse cancer models can induce significant tumor regression associated with the robust induction of apoptosis. Here we report that in MYC-, RAS-, and BCR-ABL-induced acute lymphoblastic leukemia (ALL), apoptosis upon oncogene inactivation is mediated by the same pro-apoptotic protein, BIM. The induction of BIMin the MYC- and RAS-driven leukemia is mediated by the downregulation of miR-17-92. Overexpression of miR-17-92 blocked the induction of apoptosis upon oncogene inactivation in the MYC and RAS-driven but not in the BCR-ABL-driven ALL leukemia. Hence, our results provide novel insight into the mechanism of apoptosis upon oncogene inactivation and suggest that induction of BIM-mediated apoptosis may be an important therapeutic approach for ALL.


Assuntos
Apoptose/genética , Proteína 11 Semelhante a Bcl-2/genética , Oncogenes/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Animais , Apoptose/efeitos dos fármacos , Proteína 11 Semelhante a Bcl-2/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Doxiciclina/farmacologia , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos Transgênicos , MicroRNAs/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Interferência de RNA
16.
Nat Chem Biol ; 12(2): 102-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26656089

RESUMO

High cancer death rates indicate the need for new anticancer therapeutic agents. Approaches to discovering new cancer drugs include target-based drug discovery and phenotypic screening. Here, we identified phosphodiesterase 3A modulators as cell-selective cancer cytotoxic compounds through phenotypic compound library screening and target deconvolution by predictive chemogenomics. We found that sensitivity to 6-(4-(diethylamino)-3-nitrophenyl)-5-methyl-4,5-dihydropyridazin-3(2H)-one, or DNMDP, across 766 cancer cell lines correlates with expression of the gene PDE3A, encoding phosphodiesterase 3A. Like DNMDP, a subset of known PDE3A inhibitors kill selected cancer cells, whereas others do not. Furthermore, PDE3A depletion leads to DNMDP resistance. We demonstrated that DNMDP binding to PDE3A promotes an interaction between PDE3A and Schlafen 12 (SLFN12), suggestive of a neomorphic activity. Coexpression of SLFN12 with PDE3A correlates with DNMDP sensitivity, whereas depletion of SLFN12 results in decreased DNMDP sensitivity. Our results implicate PDE3A modulators as candidate cancer therapeutic agents and demonstrate the power of predictive chemogenomics in small-molecule discovery.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Citotoxinas/farmacologia , Neoplasias/terapia , Piridazinas/química , Piridazinas/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citotoxinas/química , Citotoxinas/isolamento & purificação , Sistemas de Liberação de Medicamentos , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Genômica , Humanos , Immunoblotting
17.
Nat Genet ; 48(2): 176-82, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26656844

RESUMO

Whole-genome analysis approaches are identifying recurrent cancer-associated somatic alterations in noncoding DNA regions. We combined somatic copy number analysis of 12 tumor types with tissue-specific epigenetic profiling to identify significant regions of focal amplification harboring super-enhancers. Copy number gains of noncoding regions harboring super-enhancers near KLF5, USP12, PARD6B and MYC are associated with overexpression of these cancer-related genes. We show that two distinct focal amplifications of super-enhancers 3' to MYC in lung adenocarcinoma (MYC-LASE) and endometrial carcinoma (MYC-ECSE) are physically associated with the MYC promoter and correlate with MYC overexpression. CRISPR/Cas9-mediated repression or deletion of a constituent enhancer within the MYC-LASE region led to significant reductions in the expression of MYC and its target genes and to the impairment of anchorage-independent and clonogenic growth, consistent with an oncogenic function. Our results suggest that genomic amplification of super-enhancers represents a common mechanism to activate cancer driver genes in multiple cancer types.


Assuntos
Elementos Facilitadores Genéticos , Neoplasias Epiteliais e Glandulares/genética , Predisposição Genética para Doença , Humanos
19.
PLoS One ; 9(9): e107589, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25208064

RESUMO

The Cre/loxP system is a powerful tool for generating conditional genomic recombination and is often used to examine the mechanistic role of specific genes in tumorigenesis. However, Cre toxicity due to its non-specific endonuclease activity has been a concern. Here, we report that tamoxifen-mediated Cre activation in vivo induced the regression of primary lymphomas in p53-/- mice. Our findings illustrate that Cre activation alone can induce the regression of established tumors.


Assuntos
Antineoplásicos Hormonais/farmacologia , Integrases/genética , Linfoma/tratamento farmacológico , Linfoma/genética , Tamoxifeno/farmacologia , Proteína Supressora de Tumor p53/genética , Animais , Apoptose/efeitos dos fármacos , Carcinogênese/genética , Ativação Enzimática/efeitos dos fármacos , Terapia Genética , Integrases/metabolismo , Linfoma/metabolismo , Linfoma/patologia , Imageamento por Ressonância Magnética , Camundongos , Camundongos Knockout , Regiões Promotoras Genéticas , Carga Tumoral/efeitos dos fármacos , Proteína Supressora de Tumor p53/deficiência , Ubiquitina C/genética , Ubiquitina C/metabolismo
20.
Cancer Cell ; 26(2): 262-72, 2014 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-25117713

RESUMO

The MYC oncogene regulates gene expression through multiple mechanisms, and its overexpression culminates in tumorigenesis. MYC inactivation reverses turmorigenesis through the loss of distinguishing features of cancer, including autonomous proliferation and survival. Here we report that MYC via miR-17-92 maintains a neoplastic state through the suppression of chromatin regulatory genes Sin3b, Hbp1, Suv420h1, and Btg1, as well as the apoptosis regulator Bim. The enforced expression of miR-17-92 prevents MYC suppression from inducing proliferative arrest, senescence, and apoptosis and abrogates sustained tumor regression. Knockdown of the five miR-17-92 target genes blocks senescence and apoptosis while it modestly delays proliferative arrest, thus partially recapitulating miR-17-92 function. We conclude that MYC, via miR-17-92, maintains a neoplastic state by suppressing specific target genes.


Assuntos
Proliferação de Células , Sobrevivência Celular , Linfoma/metabolismo , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-myc/fisiologia , Animais , Apoptose , Regulação Neoplásica da Expressão Gênica , Linfoma/genética , Linfoma/patologia , Camundongos , Família Multigênica , Transplante de Neoplasias , Interferência de RNA , Carga Tumoral , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA