Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
ACS Infect Dis ; 9(10): 2016-2024, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37655755

RESUMO

Menaquinone (MK) is an essential component in the oxidative phosphorylation pathway of Gram-positive bacteria. Drugs targeting enzymes involved in MK biosynthesis can prevent electron transfer, which leads to ATP starvation and thereby death of microorganisms. Previously, we reported a series of MenA inhibitors and demonstrated their antimicrobial activity against Gram-positive bacteria, including Methicillin-resistant Staphylococcus aureus (MRSA) and mycobacteria. These inhibitors were developed by mimicking demethylmenaquinone, a product of MenA enzymatic reaction in MK biosynthesis. In this study, compound NM4, MK biosynthesis inhibitor, inhibited the formation of MRSA biofilm and it was screened against 1952 transposon mutants to elucidate mechanisms of action; however, no resistant mutants were found. Also, compound NM4 induced the production of reactive oxygen species (ROS) by blocking electron transfer in the oxidative phosphorylation pathway as observed by MRSA growth recovery using various ROS scavengers. An oxygen consumption assay also showed that NM4 blocks the oxygen consumption by MRSA, but the addition of menaquinone (MK) restores growth of MRSA. The NM4-treated MRSA induced the expression of catalase by more than 25%, as quantified by the native gel. A pulmonary murine model exhibited that NM4 significantly reduced bacterial lung load in mice without toxicity. An NM4-resistant USA300 strain was developed to attempt to identify the targets participating in the mechanism of resistance. Our results support that respiration and oxidative phosphorylation are potential targets for developing antimicrobial agents against MRSA. Altogether, our findings suggest the potential use of MK biosynthesis inhibitors as an effective antimicrobial agent against MRSA.

2.
Mol Pharm ; 20(8): 4058-4070, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37471668

RESUMO

There is a major need for the development of new therapeutics to combat antibiotic-resistant Staphylococcus aureus. Recently, gallium (Ga)-based complexes have shown promising antimicrobial effects against various bacteria, including multidrug-resistant organisms, by targeting multiple heme/iron-dependent metabolic pathways. Among these, Ga protoporphyrin (GaPP) inhibits bacterial growth by targeting heme pathways, including aerobic respiration. Ga(NO3)3, an iron mimetic, disrupts elemental iron pathways. Here, we demonstrate the enhanced antimicrobial activity of the combination of GaPP and Ga(NO3)3 against methicillin-resistant S. aureus (MRSA) under iron-limited conditions, including small colony variants (SCV). This therapy demonstrated significant antimicrobial activity without inducing slow-growing SCV. We also observed that the combination of GaPP and Ga(NO3)3 inhibited the MRSA catalase but not above that seen with Ga(NO3)3 alone. Neither GaPP nor Ga(NO3)3 alone or their combination inhibited the dominant superoxide dismutase expressed (SodA) under the iron-limited conditions examined. Intranasal administration of the combination of the two compounds improved drug biodistribution in the lungs compared to intraperitoneal administration. In a murine MRSA lung infection model, we observed a significant increase in survival and decrease in MRSA lung CFUs in mice that received combination therapy with intranasal GaPP and Ga(NO3)3 compared to untreated control or mice receiving GaPP or Ga(NO3)3 alone. No drug-related toxicity was observed as assessed histologically in the spleen, lung, nasal cavity, and kidney for both single and repeated doses of 10 mg Ga /Kg of mice over 13 days. Our results strongly suggest that GaPP and Ga(NO3)3 in combination have excellent synergism and potential to be developed as a novel therapy for infections with S. aureus.


Assuntos
Gálio , Staphylococcus aureus Resistente à Meticilina , Animais , Camundongos , Protoporfirinas/farmacologia , Protoporfirinas/metabolismo , Staphylococcus aureus , Distribuição Tecidual , Antibacterianos/farmacologia , Gálio/farmacologia , Heme/metabolismo , Ferro/metabolismo , Testes de Sensibilidade Microbiana
3.
ACS Infect Dis ; 9(4): 716-738, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-36995299

RESUMO

The treatment of infections is becoming more difficult due to emerging resistance of pathogens to existing drugs. As such, alternative druggable targets, particularly those that are essential for microbe viability and thus make it harder to develop resistance, are desperately needed. In turn, once identified, safe and effective agents that disrupt these targets must be developed. Microbial acquisition and use of iron is a promising novel target for antimicrobial drug development. In this Review we look at the various facets of iron metabolism critical to human infection with pathogenic microbes and the various ways in which it can be targeted, altered, disrupted, and taken advantage of to halt or eliminate microbial infections. Although a variety of agents will be touched upon, the primary focus will be on the potential use of one or more gallium complexes as a new class of antimicrobial agents. In vitro and in vivo data on the activity of gallium complexes against a variety of pathogens including ESKAPE pathogens, mycobacteria, emerging viruses, and fungi will be discussed in detail, as well as pharmacokinetics, novel formulations and delivery approaches, and early human clinical results.


Assuntos
Anti-Infecciosos , Gálio , Humanos , Gálio/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Ferro/metabolismo , Sistemas de Liberação de Medicamentos
4.
Microorganisms ; 12(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38276186

RESUMO

In a recent effort to mitigate harm from human pathogens, many biosynthetic pathways have been extensively evaluated for their ability to inhibit pathogen growth and to determine drug targets. One of the important products/targets of such pathways is isopentenyl diphosphate. Isopentenyl diphosphate is the universal precursor of isoprenoids, which are essential for the normal functioning of microorganisms. In general, two biosynthetic pathways lead to the formation of isopentenyl diphosphate: (1) the mevalonate pathway in animals; and (2) the non-mevalonate or methylerythritol phosphate (MEP) in many bacteria, and some protozoa and plants. Because the MEP pathway is not found in mammalian cells, it is considered an attractive target for the development of antimicrobials against a variety of human pathogens, including Mycobacterium tuberculosis (M.tb). In the MEP pathway, 4-diphosphocytidyl-2-c-methyl-d-erythritol kinase (IspE) phosphorylates 4-diphosphocytidyl-2-C-methyl-D-erythritol (CDPME) to form 4-diphosphocytidyl-2-C-methyl-D-erythritol 2-phosphate (CDPME2P). A virtual high-throughput screening against 15 million compounds was carried out by docking IspE protein. We identified an active heterotricyclic compound which showed enzymatic activity; namely, IC50 of 6 µg/mL against M.tb IspE and a MIC of 12 µg/mL against M.tb (H37Rv). Hence, we designed and synthesized similar new heterotricyclic compounds and tested them against mycobacterium, observing a MIC of 5 µg/mL against M. avium. This study will provide the critical insight necessary for developing novel antimicrobials that target the MEP pathways in pathogens.

5.
ACS Infect Dis ; 8(10): 2096-2105, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36049087

RESUMO

Pseudomonas aeruginosa is a highly antibiotic-resistant opportunistic pathogenic bacteria that is responsible for thousands of deaths each year. Infections with P. aeruginosa disproportionately impact individuals with compromised immune systems as well as cystic fibrosis patients, where P. aeruginosa lung infection is a leading cause of morbidity and mortality. In previous work, we showed that a combination of gallium (Ga) nitrate and Ga protoporphyrin worked well in several bacterial infection models but its mechanism of action (MOA) is unknown. In the current work, we have investigated the MOA of Ga combination therapy in P. aeruginosa and its analysis in the in vivo model. In P. aeruginosa treated with Ga combination therapy, we saw a decrease in catalase and superoxide dismutase (SOD) activity, key antioxidant enzymes, which could correlate with a higher potential for oxidative stress. Consistent with this hypothesis, we found that, following combination therapy, P. aeruginosa demonstrated higher levels of reactive oxygen species, as measured using the redox-sensitive fluorescent probe, H2DCFDA. We also saw that the Ga combination therapy killed phagocytosed bacteria inside macrophages in vitro. The therapy with low dose was able to fully prevent mortality in a murine model of P. aeruginosa lung infection and also significantly reduced lung damage. These results support our previous data that Ga combination therapy acts synergistically to kill P. aeruginosa, and we now show that this may occur through increasing the organism's susceptibility to oxidative stress. Ga combination therapy also showed itself to be effective at treating infection in a murine pulmonary-infection model.


Assuntos
Gálio , Pseudomonas aeruginosa , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antioxidantes/farmacologia , Bactérias , Catalase/farmacologia , Corantes Fluorescentes , Gálio/farmacologia , Humanos , Camundongos , Nitratos/farmacologia , Protoporfirinas/farmacologia , Espécies Reativas de Oxigênio , Superóxido Dismutase
6.
Bioorg Med Chem Lett ; 62: 128645, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35219822

RESUMO

Bacterial heme uptake pathways offer a novel target for antimicrobial drug discovery. Recently, gallium (Ga) porphyrin complexes were found to be effective against mycobacterial heme uptake pathways. The goal of the current study is to build on this foundation and develop a new Ga(III) porphyrin and its nanoparticles, formulated by a single emulsion-evaporation technique to inhibit the growth of Mycobacterium avium complex (MAC) with enhanced properties. Gallium 5,10,15,20-tetrakis(4-methoxyphenyl)porphyrin chloride (GaMeOTP) was synthesized from 5,10,15,20-tetrakis(4-methoxyphenyl)porphyrin and GaCl3. GaMeOTP showed enhanced antimicrobial activity against MAC104 and some clinical M. avium isolates. The synthesized Ga(III) porphyrin antimicrobial activity resulted in the overproduction of reactive oxygen species. Our study also demonstrated that F127 nanoparticles encapsulating GaMeOTP exhibited a smaller size than GaTP nanoparticles and a better duration of activity in MAC-infected macrophages compared to the free GaMeOTP. The nanoparticles were trafficked to endosomal compartments within MAC-infected macrophages, likely contributing to the antimicrobial activity of the drug.


Assuntos
Anti-Infecciosos , Gálio , Nanopartículas , Porfirinas , Antibacterianos/farmacologia , Gálio/farmacologia , Heme , Complexo Mycobacterium avium , Porfirinas/farmacologia
7.
Biol Pharm Bull ; 44(9): 1230-1238, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34471051

RESUMO

A series of salicylic acid analogues of celecoxib where the phenylsulfonamide moiety in the structure of celecoxib is replaced by salicylic acid moiety was synthesized and tested for in vitro cyclooxygenase (COX)-1 and COX-2 enzyme inhibition. Among the series, 5-substituted-2-hydroxy-benzoic acid analogues (7a-7h) generally showed better inhibitory activities on both enzymes than 4-substituted-2-hydroxy-benzoic acid analogues (12a-12h). In particular, the chloro analogue 7f which had the highest inhibitory effect (IC50 = 0.0057 µM) to COX-1 with excellent COX-1 selectivity (SI = 768) can be classified as a new potent and selective COX-1 inhibitor. The high inhibitory potency of 7f was rationalized through the docking simulation of this analogue in the active site of COX-1 enzyme.


Assuntos
Celecoxib/análogos & derivados , Ciclo-Oxigenase 1/metabolismo , Inibidores de Ciclo-Oxigenase/farmacologia , Salicilatos/farmacologia , Domínio Catalítico/efeitos dos fármacos , Celecoxib/química , Inibidores de Ciclo-Oxigenase/síntese química , Ensaios Enzimáticos , Simulação de Acoplamento Molecular , Estrutura Molecular , Salicilatos/síntese química , Relação Estrutura-Atividade
8.
ACS Infect Dis ; 7(8): 2299-2309, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34314150

RESUMO

The emergence of drug-resistant pathogens causes the greatest challenge for drug development research. Recently, gallium(III)-based compounds have received great attention as novel antimicrobial agents against drug-resistant pathogens. Here, we synthesized a new ß-cyclodextrin Ga nanoparticle (CDGaTP) using Ga tetraphenylporphyrin (GaTP, a hemin analogue) and ß-cyclodextrin. The newly synthesized nanoparticle was nontoxic and efficient at a single dose, showing sustained drug release for 15 days in vitro. CDGaTP's activity with transferrin or lactoferrin was tested, and synergism in activity was observed against nontuberculosis mycobacteria (NTM), Mycobacterium avium (M. avium), and Mycobacteroides abscessus. Human serum albumin (HSA) decreased the efficacy of both GaTP and CDGaTP in a concentration-dependent manner. The NTMs incubated with GaTP or CDGaTP significantly produced reactive oxygen species (ROS), indicating potential inhibition of antioxidant enzymes, such as catalase. The single-dose CDGaTP displayed a prolonged intracellular inhibitory activity in an in vitro macrophage infection model against both NTMs. In addition, CDGaTP, not GaTP, was effective in a murine lung M. avium infection model when delivered via intranasal administration. These results suggest that CDGaTP provides new opportunities for the development of gallium-porphyrin based antibiotics.


Assuntos
Gálio , Mycobacterium abscessus , Porfirinas , beta-Ciclodextrinas , Animais , Antibacterianos/farmacologia , Gálio/farmacologia , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Mycobacterium avium , Porfirinas/farmacologia
9.
Bioorg Med Chem Lett ; 47: 128203, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34139327

RESUMO

Menaquinone (MK) plays essential role in the electron transport chain (ETC), suggesting MK biosynthesis enzymes as potential targets for drug development. Previously, we demonstrated that Methicillin-resistant Staphylococcus aureus (MRSA) is susceptible to naphthol-based compounds which were developed by mimicking demethylmenaquinone, a product of MenA enzymatic reaction. Here, a series of new MenA inhibitors (4-19) were synthesized and evaluated as MenA inhibitors in this study. The inhibitors were designed to improve growth inhibitory activity against MRSA. Among the MenA inhibitors, bicyclic substituted amine 3 showed MIC of 3 µg/mL, and alkenyl substituted amine 11 showed MIC of 8 µg/mL against USA300. Regrowth of MRSA was observed on addition of MK when exposed to 8 µg/mL of inhibitor 11, supporting inhibition of MK biosynthesis. However, inhibitor 11 did not show efficacy in treating USA300 infected C. elegans up to 25 µg/mL concentration. However, all infected C. elegans survived when exposed to a bicyclic substituted amine 3. Hence, a bicyclic substituted amine was tested in mice for tolerability and biodistribution and observed 100% tolerable and high level of compound accumulation in lungs.


Assuntos
Aminas/farmacologia , Antibacterianos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Proteínas dos Microfilamentos/antagonistas & inibidores , Aminas/síntese química , Aminas/química , Animais , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Feminino , Staphylococcus aureus Resistente à Meticilina/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Proteínas dos Microfilamentos/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade
10.
ACS Infect Dis ; 6(10): 2582-2591, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32845117

RESUMO

There is an urgent need for new effective and safe antibiotics active against pathogenic mycobacterial species. Gallium (Ga) nitrate (Ga(NO3)3) and Ga porphyrin (GaPP) have each been shown to inhibit the growth of a variety of mycobacterial species. The Ga(III) ion derived from Ga(NO3)3 has the potential to disrupt the mycobacterial Fe(III) uptake mechanisms and utilization, including replacing iron (Fe) in the active site of enzymes, resulting in the disruption of function. Similarly, noniron metalloporphyrins such as heme mimetics, which can be transported across the bacterial membrane via heme-uptake pathways, would potentially block the acquisition of iron-containing heme and bind to heme-utilizing proteins, making them nonfunctional. Given that they likely act on different aspects of mycobacterial Fe metabolism, the efficacy of combining Ga(NO3)3 and GaPP was studied in vitro against Mycobacterium avium, Mycobacterium abscessus, and Mycobacterium tuberculosis (M. tb). The combination was then assessed in vivo in a murine pulmonary infection model of M. abscessus. We observed that Ga(NO3)3 in combination with GaPP exhibited synergistic inhibitory activity against the growth of M. avium, M. tb, and M. abscessus, being most active against M. abscessus. Activity assays indicated that Ga(NO3)3 and GaPP inhibited both catalase and aconitase at high concentrations. However, the combination showed a synergistic effect on the aconitase activity of M. abscessus. The Ga(NO3)3/GaPP combination via intranasal administration showed significant antimicrobial activity in mice infected with M. abscessus. M. abscessus CFU from the lungs of the Ga(NO3)3/GaPP-treated mice was significantly less compared to that of nontreated or single Ga(III)-treated mice. These findings suggest that combinations of different Ga(III) compounds can synergistically target multiple iron/heme-utilizing mycobacterial enzymes. The results support the potential of combination Ga therapy for development against mycobacterial pathogens.


Assuntos
Gálio , Porfirinas , Animais , Gálio/farmacologia , Heme , Ferro , Camundongos , Testes de Sensibilidade Microbiana , Porfirinas/farmacologia
11.
ACS Chem Neurosci ; 11(3): 356-366, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31909963

RESUMO

The glyoxalase pathway (GP) is an antioxidant defense system that detoxifies metabolic byproduct methylglyoxal (MG). Through sequential reactions, reduced glutathione (GSH), glyoxalase I (glo-1), and glyoxalase II (glo-2) convert MG into d-lactate. Spontaneous reactions involving MG alter the structure and function of cellular macromolecules through the formation of inflammatory advanced glycation endproducts (AGEs). Accumulation of MG and AGEs in neural cells contributes to oxidative stress (OS), a state of elevated inflammation commonly found in neurodegenerative diseases including Alzheimer's disease (AD). Morin is a common plant-produced flavonoid polyphenol that exhibits the ability to enhance the GP-mediated detoxification of MG. We hypothesize that structural modifications to morin will improve its inherent GP enhancing ability. Here we synthesized a morin derivative, dibromo-morin (DBM), formulated a morin encapsulated nanoparticle (MNP), and examined their efficacy in enhancing neural GP activity. Cultured mouse primary cerebellar neurons and Caenorhabditis elegans were induced to a state of OS with MG and treated with morin, DBM, and MNP. Results indicated the morin derivatives were more effective compared to the parent compound in neural GP enhancement and preventing MG-mediated OS in an AD model.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Flavonoides/farmacologia , Lactoilglutationa Liase/farmacologia , Animais , Antioxidantes/farmacologia , Flavonoides/química , Inflamação/metabolismo , Lactoilglutationa Liase/metabolismo , Camundongos Endogâmicos C57BL , Vias Neurais/metabolismo , Neurônios/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Aldeído Pirúvico/metabolismo , Aldeído Pirúvico/farmacologia
12.
ACS Infect Dis ; 5(9): 1559-1569, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31264851

RESUMO

Iron- and heme-uptake pathways and metabolism are promising targets for the development of new antimicrobial agents, as their disruption would lead to nutritional iron starvation and inhibition of bacterial growth. Salts of gallium(III) (Ga), an iron mimetic metal, disrupt iron-dependent biological processes by binding iron-utilizing proteins and competing with iron for uptake by bacterial siderophore-mediated iron uptake systems. Ga porphyrins, heme mimetic complexes, disrupt heme-utilizing hemoproteins. Because Ga(NO3)3 and Ga porphyrin disrupt different pathways of bacterial ion acquisition and utilization, we hypothesized that if used in combination, they would result in enhanced antimicrobial activity. Antimicrobial activity of Ga porphyrins (Ga protoporphyrin, GaPP, or Ga mesoporphyrin, GaMP) alone and in combination with Ga(NO3)3 were evaluated against Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumannii, and methicillin-resistant Staphylococcus aureus (MRSA) under iron-limited conditions. The Ga porphyrin/Ga(NO3)3 combination demonstrated substantial synergism against K. pneumoniae, P. aeruginosa, and MRSA. Time-kill assays revealed that the synergistic combination of GaPP/Ga(NO3)3 was bacteriostatic against K. pneumoniae and MRSA and bactericidal against P. aeruginosa. The GaPP/Ga(NO3)3 combination significantly disrupted K. pneumoniae and P. aeruginosa biofilms on plasma-coated surfaces and increased the survival of Caenorhabditis elegans infected with K. pneumoniae or P. aeruginosa. When assessing the antibacterial activity of the Ga(III)/antibiotic combinations, GaPP/colistin and Ga(NO3)3/colistin combinations also showed synergistic activity against K. pneumoniae and P. aeruginosa. Our results demonstrate that GaPP and Ga(NO3)3 have significant synergistic effects against several important human bacterial pathogens through dual inhibition of iron and heme metabolism.


Assuntos
Bactérias/metabolismo , Gálio/química , Ferro/metabolismo , Porfirinas/farmacologia , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/metabolismo , Bactérias/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Sinergismo Farmacológico , Gálio/farmacologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/metabolismo , Testes de Sensibilidade Microbiana , Porfirinas/química , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo
13.
mSphere ; 4(4)2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-31341073

RESUMO

Tuberculosis (TB), caused by Mycobacterium tuberculosis, remains a global threat. The course of TB is negatively impacted by coexistent infection with human immunodeficiency virus type 1 (HIV). Macrophage infection with these pathogens modulates their production of pro- and anti-inflammatory cytokines, which could play a crucial role in pathogenesis. Despite the important role of macrophages in containing infection by a variety of microbes, both HIV and M. tuberculosis infect and replicate within these cells during the course of HIV-M. tuberculosis coinfection. Both M. tuberculosis and HIV require iron for growth and replication. We have previously shown that gallium encapsulated in nanoparticles, which interferes with cellular iron acquisition and utilization, inhibited the growth of HIV and an attenuated strain of M. tuberculosis within human monocyte-derived macrophages (MDMs) in vitro Whether this was true for a fully virulent strain of M. tuberculosis and whether gallium treatment modulates cytokine production by HIV- and/or M. tuberculosis-infected macrophages have not been previously addressed. Therefore, coinfection of MDMs with HIV and a virulent M. tuberculosis strain (H37Rv) was studied in the presence of different gallium nanoparticles (GaNP). All GaNP were readily internalized by the MDMs, which provided sustained drug (gallium) release for 15 days. This led to significant growth inhibition of both HIV and M. tuberculosis within MDMs for up to 15 days after loading of the cells with all GaNP tested in our study. Cytokine analysis showed that HIV-M. tuberculosis coinfected macrophages secreted large amounts of interleukin 6 (IL-6) and IL-8 and smaller amounts of IL-1ß, IL-4, and tumor necrosis factor alpha (TNF-α) cytokines. However, all GaNP were able to regulate the release of cytokines significantly. GaNP interrupts iron-mediated enzymatic reactions, leading to growth inhibition of HIV-M. tuberculosis coinfection in macrophages, and also modulates release of cytokines that may contribute to HIV-TB pathogenesis.IMPORTANCE GaNP interrupts iron-mediated enzymatic reactions, leading to growth inhibition of virulent HIV-M. tuberculosis coinfection in macrophages, and also modulates release of cytokines that may contribute to HIV-TB pathogenesis. Macrophage-targeting GaNP are a promising therapeutic approach to provide sustained antimicrobial activity against HIV-M. tuberculosis coinfection.


Assuntos
Citocinas/imunologia , Gálio/farmacologia , HIV-1/efeitos dos fármacos , Nanopartículas Metálicas/química , Mycobacterium tuberculosis/efeitos dos fármacos , Células Cultivadas , Humanos , Ferro/metabolismo , Macrófagos/microbiologia , Macrófagos/virologia , Mycobacterium tuberculosis/patogenicidade
14.
Artigo em Inglês | MEDLINE | ID: mdl-30962346

RESUMO

Mycobacterium tuberculosis is the leading cause of morbidity and death resulting from infectious disease worldwide. The incredible disease burden, combined with the long course of drug treatment and an increasing incidence of antimicrobial resistance among M. tuberculosis isolates, necessitates novel drugs and drug targets for treatment of this deadly pathogen. Recent work has produced several promising clinical candidates targeting components of the electron transport chain (ETC) of M. tuberculosis, highlighting this pathway's potential as a drug target. Menaquinone is an essential component of the M. tuberculosis ETC, as it functions to shuttle electrons through the ETC to produce the electrochemical gradient required for ATP production for the cell. We show that inhibitors of MenA, a component of the menaquinone biosynthetic pathway, are highly active against M. tuberculosis MenA inhibitors are bactericidal against M. tuberculosis under both replicating and nonreplicating conditions, with 10-fold higher bactericidal activity against nutrient-starved bacteria than against replicating cultures. MenA inhibitors have enhanced activity in combination with bedaquiline, clofazimine, and inhibitors of QcrB, a component of the cytochrome bc1 oxidase. Together, these data support MenA as a viable target for drug treatment against M. tuberculosis MenA inhibitors not only kill M. tuberculosis in a variety of physiological states but also show enhanced activity in combination with ETC inhibitors in various stages of clinical trial testing.


Assuntos
Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Clofazimina/farmacologia , Diarilquinolinas/farmacologia , Transporte de Elétrons/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/metabolismo , Oxirredução/efeitos dos fármacos
15.
Artigo em Inglês | MEDLINE | ID: mdl-30782994

RESUMO

Iron/heme acquisition systems are critical for microorganisms to acquire iron from the human host, where iron sources are limited due to the nutritional immune system and insolubility of the ferric form of iron. Prior work has shown that a variety of gallium compounds can interfere with bacterial iron acquisition. This study explored the intra- and extracellular antimicrobial activities of gallium protoporphyrin (GaPP), gallium mesoporphyrin (GaMP), and nanoparticles encapsulating GaPP or GaMP against the Gram-negative pathogens Pseudomonas aeruginosa and Acinetobacter baumannii, including clinical isolates. All P. aeruginosa and A. baumannii isolates were susceptible to GaPP and GaMP, with MICs ranging from 0.5 to ∼32 µg/ml in iron-depleted medium. Significant intra- and extracellular growth inhibition was observed against P. aeruginosa cultured in macrophages at a gallium concentration of 3.3 µg/ml (5 µM) of all Ga(III) compounds, including nanoparticles. Nanoparticle formulations showed prolonged activity against both P. aeruginosa and A. baumannii in previously infected macrophages. When the macrophages were loaded with the nanoparticles 3 days prior to infection, there was a 5-fold decrease in growth of P. aeruginosa in the presence of single emulsion F127 copolymer nanoparticles encapsulating GaMP (eFGaMP). In addition, all Ga(III) porphyrins and nanoparticles showed significant intracellular and antibiofilm activity against both pathogens, with the nanoparticles exhibiting intracellular activity for 3 days. Ga nanoparticles also increased the survival rate of Caenorhabditis elegans nematodes infected by P. aeruginosa and A. baumannii Our results demonstrate that Ga nanoparticles have prolonged in vitro and in vivo activities against both P. aeruginosa and A. baumannii, including disruption of their biofilms.


Assuntos
Infecções por Acinetobacter/tratamento farmacológico , Acinetobacter baumannii/efeitos dos fármacos , Gálio/farmacologia , Heme/metabolismo , Ferro/metabolismo , Nanopartículas/administração & dosagem , Pseudomonas aeruginosa/efeitos dos fármacos , Infecções por Acinetobacter/metabolismo , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/metabolismo , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Células Cultivadas , Humanos , Testes de Sensibilidade Microbiana/métodos , Protoporfirinas/metabolismo , Pseudomonas aeruginosa/metabolismo , Células THP-1
16.
Mol Pharm ; 15(3): 1215-1225, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29421865

RESUMO

The nontuberculous mycobacterial (NTM) pathogens, M. avium complex (MAC) and M. abscessus, can result in severe pulmonary infections. Current antibiotics confront significant challenges for treatment of these NTM infections due to emerging multidrug-resistance. Thus, development of new antibiotics targeted against these agents is needed. We examined the inhibitory activities of Ga(NO3)3, GaCl3, gallium meso-tetraphenylporphyrine (GaTP), and gallium nanoparticles (GaNP) against intra- and extracellular M. avium and M. abscessus. GaTP, an analogue of natural heme, inhibited growth of both M. avium and M. abscessus with MICs in Fe-free 7H9 media of 0.5 and 2 µg/mL, respectively. GaTP was more active than Ga(NO3)3 and GaCl3. Ga(NO3)3 and GaCl3 were not as active in Fe-rich media compared to Fe-free media. However, GaTP was much less impacted by exogenous Fe, with MICs against M. avium and M. abscessus of 2 and 4 µg/mL, respectively, in 7H9 OADC media (Fe rich). Confocal microscopy showed that GaNP penetrates the M. avium cell wall. As assessed by determining colony forming units, GaNP inhibited the growth of NTM growing in THP-1 macrophages up to 15 days after drug-loading of the cells, confirming a prolonged growth inhibitory activity of the GaNP. Biodistribution studies of GaNP conducted in mice showed that intraperitoneal injection is more effective than intramuscular injection in delivering Ga(III) into lung tissue. GaTP exhibits potential as a lead compound for development of anti-NTM agents that target heme-bound iron uptake mechanisms by mycobacteria and inhibit growth by disrupting mycobacterial iron acquisition/utilization.


Assuntos
Antibacterianos/farmacologia , Gálio/farmacologia , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Mycobacterium abscessus/efeitos dos fármacos , Mycobacterium avium/efeitos dos fármacos , Infecções Respiratórias/tratamento farmacológico , Animais , Antibacterianos/uso terapêutico , Linhagem Celular Tumoral , Feminino , Gálio/uso terapêutico , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Modelos Animais , Infecções por Mycobacterium não Tuberculosas/microbiologia , Nanopartículas/química , Porfirinas/química , Infecções Respiratórias/microbiologia , Distribuição Tecidual
17.
PLoS One ; 12(5): e0177987, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28542623

RESUMO

New treatments and novel drugs are required to counter the growing problem of drug-resistant strains of Mycobacterium tuberculosis (M.tb). Our approach against drug resistant M.tb, as well as other intracellular pathogens, is by targeted drug delivery using nanoformulations of drugs already in use, as well as drugs in development. Among the latter are gallium (III) (Ga)-based compounds. In the current work, six different types of Ga and rifampin nanoparticles were prepared in such a way as to enhance targeting of M.tb infected-macrophages. They were then tested for their ability to inhibit growth of a fully pathogenic strain (H37Rv) or a non-pathogenic strain (H37Ra) of M.tb. Encapsulating Ga in folate- or mannose-conjugated block copolymers provided sustained Ga release for 15 days and significantly inhibited M.tb growth in human monocyte-derived macrophages. Nanoformulations with dendrimers encapsulating Ga or rifampin also showed promising anti-tuberculous activity. The nanoparticles co-localized with M.tb containing phagosomes, as measured by detection of mature cathepsin D (34 kDa, lysosomal hydrogenase). They also promoted maturation of the phagosome, which would be expected to increase macrophage-mediated killing of the organism. Delivery of Ga or rifampin in the form of nanoparticles to macrophages offers a promising approach for the development of new therapeutic anti-tuberculous drugs.


Assuntos
Gálio/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Nanopartículas Metálicas/química , Mycobacterium tuberculosis/efeitos dos fármacos , Antituberculosos/química , Antituberculosos/farmacologia , Catepsina D/genética , Catepsina D/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Dendrímeros/química , Ácido Fólico/química , Galectina 3/genética , Galectina 3/metabolismo , Gálio/análise , Gálio/metabolismo , Humanos , Macrófagos/citologia , Macrófagos/metabolismo , Manose/química , Mycobacterium tuberculosis/fisiologia , Tamanho da Partícula , Fagossomos/metabolismo , Fagossomos/microbiologia , Polímeros/química , Rifampina/química , Rifampina/farmacologia , Virulência/efeitos dos fármacos
18.
Artigo em Inglês | MEDLINE | ID: mdl-28167548

RESUMO

Treatment of individuals coinfected with human immunodeficiency virus (HIV) type 1 and Mycobacterium tuberculosis is challenging due to the prolonged treatment requirements, drug toxicity, and emergence of drug resistance. Mononuclear phagocytes (MP; macrophages) are one of the natural reservoirs for both HIV and M. tuberculosis Here, the treatment of HIV and M. tuberculosis coinfection was studied by preloading human macrophages with MP-targeted gallium (Ga) nanoparticles to limit subsequent simultaneous infection with both HIV and M. tuberculosis Ga nanoparticles provided sustained drug release for 15 days and significantly inhibited the replication of both HIV and M. tuberculosis Addition of Ga nanoparticles to MP already infected with M. tuberculosis or HIV resulted in a significant decrease in the magnitude of these infections, but the magnitude was less than that achieved with nanoparticle preloading of the MP. In addition, macrophages that were coinfected with HIV and M. tuberculosis and that were loaded with Ga nanoparticles reduced the levels of interleukin-6 (IL-6) and IL-8 secretion for up to 15 days after drug loading. Ga nanoparticles also reduced the levels of IL-6 and IL-8 secretion by ionomycin- and lipopolysaccharide-induced macrophages, likely by modulating the IκB kinase-ß/NF-κB pathway. Delivery of Ga nanoparticles to macrophages is a potent long-acting approach for suppressing HIV and M. tuberculosis coinfection of macrophages in vitro and sets the stage for the development of new approaches to the treatment of these important infections.


Assuntos
Gálio/farmacologia , HIV-1/efeitos dos fármacos , HIV-1/patogenicidade , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Nanopartículas Metálicas/química , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/fisiologia , Células Cultivadas , Coinfecção/microbiologia , Coinfecção/virologia , Humanos , Macrófagos/microbiologia , Macrófagos/virologia , NF-kappa B/metabolismo , Replicação Viral/efeitos dos fármacos
19.
Sci Rep ; 7: 40077, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28071679

RESUMO

Menaquinone (MK) biosynthesis pathway is a potential target for evaluating antimicrobials in gram-positive bacteria. Here, 1,4-dihydroxy-2-naphthoate prenyltransferase (MenA) was targeted to reduce methicillin-resistant Staphylococcus aureus (MRSA) growth. MenA inhibiting, long chain-based compounds were designed, synthesized and evaluated against MRSA and menaquinone utilizing bacteria in aerobic conditions. The results showed that these bacteria were susceptible to most of the compounds. Menaquinone (MK-4) supplementation rescued MRSA growth, suggesting these compounds inhibit MK biosynthesis. 3a and 7c exhibited promising inhibitory activities with MICs ranging 1-8 µg/mL against MRSA strains. The compounds did not facilitate small colony variant formation. These compounds also inhibited the biofilm growth by MRSA at high concentration. Compounds 3a, 6b and 7c displayed a promising extracellular bactericidal activity against MRSA at concentrations equal to and four-fold less than their respective MICs. We also observed cytokines released from THP-1 macrophages treated with compounds 3a, 6b and 7c and found decreases in TNF-α and IL-6 release and increase in IL-1ß. These data provide evidence that MenA inhibitors act as TNF-α and IL-6 inhibitors, raising the potential for development and application of these compounds as potential immunomodulatory agents.


Assuntos
Alquil e Aril Transferases/antagonistas & inibidores , Antibacterianos/farmacologia , Biofilmes/crescimento & desenvolvimento , Citocinas/metabolismo , Inibidores Enzimáticos/farmacologia , Fatores Imunológicos/farmacologia , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Antibacterianos/síntese química , Bactérias Aeróbias/efeitos dos fármacos , Bactérias Aeróbias/crescimento & desenvolvimento , Biofilmes/efeitos dos fármacos , Inibidores Enzimáticos/síntese química , Humanos , Fatores Imunológicos/síntese química , Macrófagos/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Células THP-1 , Vitamina K 2/metabolismo
20.
Bioorg Med Chem Lett ; 26(8): 1997-9, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26965856

RESUMO

DNA-dependent RNA primase is essential for de novo primer synthesis during DNA replication in all living organisms. Bacterial DnaG primase is an attractive target for inhibition because it is essential, low in copy number and structurally distinct from eukaryotic and archaeal primases. DnaG primase is sensitive to known inhibitors including suramin and doxorubicin. Recently, tilorone was discovered by high throughput screening to be an inhibitor of Bacillus anthracis primase DnaG but it failed to reduce the growth of B. anthracis in vitro. In this study we determined that tilorone also inhibited DnaG primase from Staphylococcus aureus. C2-Symmetric fluorenone-based compounds, similar to tilorone chemical structure were synthesized and tested to identify potential lead compounds that inhibit bacterial growth in B. anthracis, MRSA and Burkholderia thailandensis. These compounds were evaluated by determining the minimum inhibitory concentration (MIC) against several different bacterial species which demonstrated 17.5 and 16 µg/ml MIC profiles. Importantly, some of the fluorenone-based compounds with a long carbon chain showed a relatively low MIC against B. anthracis, S. aureus, MRSA, Francisella tularensis, and B. thailandensis, suggesting it may be a promising lead compound.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Fluorenos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Bactérias/enzimologia , DNA Primase/antagonistas & inibidores , DNA Primase/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Fluorenos/síntese química , Fluorenos/química , Ensaios de Triagem em Larga Escala , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA