Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Small ; : e2309634, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38845070

RESUMO

A novel green-absorbing organic molecule featuring dual intramolecular chalcogen bonds is synthesized and characterized. This molecule incorporates two such bonds: one between a tellurium atom and the oxygen atom of a carbonyl moiety, and the other between the tellurium atom and the adjacent nitrogen atom within a pyridine moiety. The molecule, featuring dual intramolecular chalcogen bonds exhibits a narrow absorption spectrum and elevated absorption coefficients, closely aligned with a resonance parameter of approximately 0.5. This behavior is due to its cyanine-like characteristics and favorable electrical properties, which are a direct result of its rigid, planar molecular structure. Therefore, this organic molecule forming dual intramolecular chalcogen bonds achieves superior optoelectronic performance in green-selective photodetectors, boasting an external quantum efficiency of over 65% and a full-width at half maximum of less than 95 nm while maintaining the performance after 1000 h of heating aging at 85 °C. Such organic photodetectors are poised to enhance stacked organic photodetector-on-silicon hybrid image sensors, paving the way for the next-generation of high-resolution and high-sensitivity image sensors.

2.
Viruses ; 15(10)2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37896787

RESUMO

The white spot syndrome virus (WSSV) is the causative agent of white spot disease, which kills shrimp within a few days of infection. Although WSSV has a mortality rate of almost 100% and poses a serious threat to the shrimp farming industry, strategies for its prevention and treatment are extremely limited. In this study, we examined the efficacy of VP28, a recombinant WSSV protein expressed in Chlorella vulgaris (C. vulgaris), as an oral shrimp vaccine. When compared with the control group, in which WSSV had a cumulative mortality of 100%, shrimp treated with 5% VP28-expressing C. vulgaris in their feed only had a 20% cumulative mortality rate 12 days after the WSSV challenge. When compared with the nonvaccinated group, the transcription of anti-lipopolysaccharide factor, C-type lectin, and prophenoloxidase genes, which are involved in shrimp defense against WSSV infection, was upregulated 29.6 fold, 15.4 fold, and 11.5 fold, respectively. These findings highlight C. vulgaris as a potential host for industrial shrimp vaccine production.


Assuntos
Chlorella vulgaris , Vacinas , Vírus da Síndrome da Mancha Branca 1 , Animais , Proteínas do Envelope Viral/metabolismo , Chlorella vulgaris/genética , Chlorella vulgaris/metabolismo , Vírus da Síndrome da Mancha Branca 1/genética , Proteínas Recombinantes/genética , Crustáceos
3.
Vaccines (Basel) ; 11(7)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37515021

RESUMO

The demand for aquaculture is increasing, but production is declining due to high feed costs and disease outbreaks. Viral hemorrhagic septicemia (VHS) is a viral disease that seriously affects seawater and freshwater fish in aquaculture, including the olive flounder (Paralichthys olivaceus), a major aquaculture fish in Korea. However, very few vaccines are currently available for viral hemorrhagic septicemia virus (VHSV). The nutrient-rich microalga Chlorella vulgaris has been used as a feed additive in aquaculture and as a host for the industrial production of recombinant VHSV glycoprotein as an oral vaccine. In this study, VHSV glycoprotein was cloned with a salt-inducible promoter, and high levels of expression up to 41.1 mg/g wet C. vulgaris, representing 27.4% of total extracted soluble protein, were achieved by growing the transformed C. vulgaris for 5 days in the presence of 250 mM NaCl. The production of a neutralizing antibody was detected in the serum of fish given feed containing 9% VHSV glycoprotein-expressing C. vulgaris. Furthermore, relative survival rates of 100% and 81.9% were achieved following challenges of these fish with VHSV at 106 and 107 pfu/fish, respectively, indicating that C. vulgaris could be used as a platform for the production of recombinant proteins for use as oral vaccines in the control of viral diseases in aquaculture.

4.
J Microbiol Biotechnol ; 33(7): 955-963, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37164686

RESUMO

Chlorella is a eukaryotic organism that can be used as an industrial host to produce recombinant proteins. In this study, a salt-inducible promoter (SIP) was isolated from the freshwater species Chlorella vulgaris PKVL7422 from the screening of genes that were upregulated after salt treatment. Several cis-acting elements, including stress response elements, were identified in the isolated SIP. Moreover, the Gaussia luciferase gene was cloned after the SIP and transformed into C. vulgaris to test the inducibility of this promoter. Reexamination of transcriptome of C. vulgaris revealed that genes involved in the synthesis of methyl jasmonic acid (MeJA), gibberellin (GA), and abscisic acid (ABA) were upregulated when C. vulgaris was treated with salt. Furthermore, the expression level of recombinant luciferase increased when the transformed C. vulgaris was treated with salt and MeJA, GA, and ABA. This study represents the first report of the C. vulgaris SIP and highlights how transformed microalgae could be used for robust expression of recombinant proteins.


Assuntos
Chlorella vulgaris , Microalgas , Chlorella vulgaris/genética , Regiões Promotoras Genéticas , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Cloreto de Sódio/metabolismo , Cloreto de Sódio na Dieta , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Luciferases/genética , Microalgas/metabolismo
5.
J Acupunct Meridian Stud ; 16(2): 49-55, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37076179

RESUMO

Background: A significant amount of research has been conducted to establish the validity of acupuncture, and it has been demonstrated through animal disease model studies that acupuncture influences mitochondrial changes. However, to more accurately examine the mechanisms of acupuncture treatment effectiveness in pathological models, it is crucial to investigate changes in disease-free animals. Among various hypotheses regarding the effects of acupuncture on the body, we focused on the result that acupuncture stimulation is related to mitochondria. Objectives: We examined the effects of acupuncture mitochondrial fission and fusionrelated mediators in disease-free Sprague Dawley (SD) rats' spleen meridian acupoints. Methods: SD rats were divided into control, SP1, SP2, SP3, SP5, and SP9 acupuncture groups. Acupuncture was performed at each point for 10 minutes daily for four days. Peroxisome proliferator-activated receptor-gamma coactivator 1-α (PGC-1α) and fission protein 1 (Fis1) levels were evaluated using quantitative real-time polymerase chain reaction (qRT-PCR), while dynamin-related protein 1 (DRP1), optic atrophy-1 (OPA1), mitofusin-1 (MFN1), and mitofusin-2 (MFN2) levels were assessed via western blotting. Mitochondria protein concentrations and NADH dehydrogenase activity in spleen tissues were measured using enzyme-linked immunosorbent assay (ELISA). Results: PGC-1α expression decreased in the SP1 (p < 0.01), SP5 (p < 0.05), and SP9 (p < 0.05) groups, while Fis1 expression increased in the SP1 (p < 0.01), SP5 (p < 0.01), and SP9 (p < 0.05) groups. DRP1, OPA1, MFN1, and MFN2 levels exhibited no significant changes. Mitochondrial protein concentrations decreased in the SP2 (p < 0.01), SP3 (p < 0.01), SP5 (p < 0.01), and SP9 (p < 0.01) groups, while NADH dehydrogenase activity decreased in the SP2 (p < 0.05) and SP9 (p < 0.05) groups. Conclusion: Acupuncture at the SP9 acupoint influenced the mitochondrial fission pathway by modulating PGC-1α and Fis1 mediators in the rat spleen under non-disease conditions.


Assuntos
Terapia por Acupuntura , Dinâmica Mitocondrial , Ratos , Animais , Ratos Sprague-Dawley , Dinâmica Mitocondrial/fisiologia , NADH Desidrogenase/farmacologia , Baço , Expressão Gênica
6.
Adv Sci (Weinh) ; 9(32): e2203715, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36192160

RESUMO

The present work describes the development of an organic photodiode (OPD) receiver for high-speed optical wireless communication. To determine the optimal communication design, two different types of photoelectric conversion layers, bulk heterojunction (BHJ) and planar heterojunction (PHJ), are compared. The BHJ-OPD device has a -3 dB bandwidth of 0.65 MHz (at zero bias) and a maximum of 1.4 MHz (at -4 V bias). A 150 Mbps single-channel visible light communication (VLC) data rate using this device by combining preequalization and machine learning (ML)-based digital signal processing (DSP) is demonstrated. To the best of the authors' knowledge, this is the highest data rate ever achieved on an OPD-based VLC system by a factor of 40 over the previous fastest reported. Additionally, the proposed OPD receiver achieves orders of magnitude higher spectral efficiency than the previously reported organic photovoltaic (OPV)-based receivers.

7.
Environ Res ; 214(Pt 3): 113998, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35940229

RESUMO

We examined the seasonal cycle of radon concentration observed at King Sejong Station (KSG, 62°S), Antarctic Peninsula, during the period 2013-2016. The distribution of monthly radon concentration was found to be highly positively skewed from March through October (austral autumn to spring) due to large numbers of short-lived periods of high radon concentration. The global atmospheric chemistry model (CAM-Chem), which includes all global terrestrial sources of radon except for those in Antarctica, well reproduces the observed seasonal cycle of monthly-mean radon concentration at KSG. Further offline experiments suggest that uncertainties in radon emissions over South America and the Southern Ocean should be improved for the simulations of radon in Antarctica. The results demonstrate that seasonally varying transport of radon in the boundary layer from South America substantially affects the seasonality of monthly mean radon concentration at KSG. The composite analyses further reveal that high radon events at KSG are the result of a distinct east-west dipole-like structure associated with surface cyclonic circulation over the Bellingshausen Sea and anticyclonic circulation in the Weddell Sea. This atmospheric pattern provides favorable conditions for radon transport into KSG from the northwest. The relationship between radon concentration at KSG and climate variability is also discussed in this study.


Assuntos
Radônio , Regiões Antárticas , Clima , Estações do Ano
8.
Environ Res ; 214(Pt 3): 114087, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35961543

RESUMO

Using ozonesonde measurements from 2015 to 2018 at the Jang Bogo station located in the southeastern Antarctic region, we evaluate ozone profiles retrieved from the three satellite measurements that are widely used: Ozone Monitoring Instrument (OMI), Microwave Limb Sounder (MLS), and Ozone Mapping Profiler Suite (OMPS) data. For the fair validation, ozonesonde profiles are smoothed using the weighting function of each satellite retrieval algorithm (i.e., convolution process). Compared with limb-viewing MLS and OMPS ozone profiles, the OMI ozone profiles are relatively less qualified: coarser vertical resolution and larger inter-annual variation. Nevertheless, our validation reveals that the quality of all three satellite ozone profiles looks comparable; In general, difference from ozonesonde profile is ∼1 ppm absolutely, and -20 to 30% relatively at maximum. This quantitative range well corresponds to previous work, meaning that our new validation confirms the reliability of satellite ozone profiles in the southeastern Antarctic region where the measurement data for the validation were not enough. Another interesting feature is the role of a priori ozone profile; Nadir-viewing OMI satellite can have qualified ozone profiles by a proper assumption of a priori ozone profile. Since the performance of limb-viewing ozone profiles is better, however, the careful usage of nadir-viewing ozone profile is still required. We think that the simultaneous usage of multiple satellite ozone profiles can contribute to better understanding of Antarctic ozone characteristics.


Assuntos
Ozônio , Regiões Antárticas , Ozônio/análise , Reprodutibilidade dos Testes , Estações do Ano
9.
Chem Asian J ; 17(17): e202200609, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35833622

RESUMO

[60]Fullerene derivatives with high thermal stability can be used for vacuum deposition under heating to fabricate thin films for organic electronic devices. Here, we investigated the thermal stability of [60]fullerene derivatives with various bulky substituents for thermal evaporation under vacuum by means of thermogravimetric analysis under reduced and normal pressure. We found sterically bulky groups such as tert-butyl groups of [60]fullerene derivatives lowered the vacuum deposition temperature. Also, we performed isothermal thermogravimetric analysis to examine the long-term thermal stability of the designed compounds under heating conditions. Furthermore, we investigated the UV-Vis absorption patterns of the deposited films. Absorption in the blue wavelength range, which was attributed to intermolecular HOMO-LUMO transitions among the molecular orbitals of adjacent [60]fullerenes, was dramatically modified. These results were associated with the prevention of aggregation among neighboring [60]fullerene by the sterically bulky groups. This concept could contribute to expanding the use of evaporable [60]fullerene derivatives in organic thin-film electronics research fields.

10.
Nat Commun ; 13(1): 3745, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768429

RESUMO

Organic photodetectors (OPDs) exhibit superior spectral responses but slower photoresponse times compared to inorganic counterparts. Herein, we study the light-intensity-dependent OPD photoresponse time with two small-molecule donors (planar MPTA or twisted NP-SA) co-evaporated with C60 acceptors. MPTA:C60 exhibits the fastest response time at high-light intensities (>0.5 mW/cm2), attributed to its planar structure favoring strong intermolecular interactions. However, this blend exhibits the slowest response at low-light intensities, which is correlated with biphasic photocurrent transients indicative of the presence of a low density of deep trap states. Optical, structural, and energetical analyses indicate that MPTA molecular packing is strongly disrupted by C60, resulting in a larger (370 meV) HOMO level shift. This results in greater energetic inhomogeneity including possible MPTA-C60 adduct formation, leading to deep trap states which limit the low-light photoresponse time. This work provides important insights into the small molecule design rules critical for low charge-trapping and high-speed OPD applications.

11.
ACS Appl Mater Interfaces ; 14(3): 4360-4370, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-34890196

RESUMO

A novel series of donor (D)-π-acceptor (A) merocyanine molecules harnessed with intramolecular chalcogen bonding (ChaB) is designed, synthesized, and characterized. ChaB comprises periodic chalcogen atoms, S, Se, and Te, and a neighboring oxygen atom of a carbonyl moiety. Compared to the D-π-A merocyanine dye with nontraditional intramolecular hydrogen bonding, the novel molecules with an intramolecular ChaB exhibit remarkably smaller absorption spectral widths and higher absorption coefficients attributed to their cyanine-like characteristics approaching the resonance parameter (c2) ∼0.5; furthermore, they exhibit better thermal stabilities and electrical charge-carrier transport properties in films. These novel D-π-A merocyanines harnessed with intramolecular ChaB networks are successfully utilized in high-performance color-selective organic photon-to-current conversion optoelectronic devices with excellent thermal stabilities. This study reports that the unique intramolecular ChaB plays an essential role in locking the molecular conformation of merocyanine molecules and enhancing the optical, thermal, and optoelectronic properties of high-performance and high-efficiency organic photon-to-current conversion devices.

12.
Plant Pathol J ; 37(6): 555-565, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34897248

RESUMO

Bacteriophages infecting Acidovorax citrulli, the causal agent of bacterial fruit blotch, have been proven to be effective for the prevention and control of this disease. However, the occurrence of bacteriophage-resistant bacteria is one of hurdles in phage biocontrol and the understanding of phage resistance in this bacterium is an essential step. In this study, we aim to investigate possible phage resistance of A. citrulli and relationship between phage resistance and pathogenicity, and to isolate and characterize the genes involved in these phenomena. A phage-resistant and less-virulent mutant named as AC-17-G1 was isolated among 3,264 A. citrulli Tn5 mutants through serial spot assays and plaque assays followed by pathogenicity test using seed coating method. The mutant has the integrated Tn5 in the middle of a cupin protein gene. This mutant recovered its pathogenicity and phage sensitivity by complementation with corresponding wild-type gene. Site-directed mutation of this gene from wild-type by CRISPR/Cas9 system resulted in the loss of pathogenicity and acquisition of phage resistance. The growth of AC-17-G1 in King's B medium was much less than the wild-type, but the growth turned into normal in the medium supplemented with D-mannose 6-phosphate or D-fructose 6-phosphate indicating the cupin protein functions as a phosphomannos isomerase. Sodium dodecyl sulfa analysis of lipopolysaccharide (LPS) extracted from the mutant was smaller than that from wild-type. All these data suggest that the cupin protein is a phosphomannos isomerase involved in LPS synthesis, and LPS is an important determinant of pathogenicity and phage susceptibility of A. citrulli.

13.
Antibiotics (Basel) ; 10(12)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34943708

RESUMO

Bacteriophages are viruses that specifically infect a bacterial host. They play a great role in the modern biotechnology and antibiotic-resistant microbe era. Since the discovery of phages, their application as a control agent has faced challenges that made antibiotics a better fit for combating pathogenic bacteria. Recently, with the novel sequencing technologies providing new insight into the nature of bacteriophages, their application has a second chance to be used. However, novel challenges need to be addressed to provide proper strategies for their practical application. This review focuses on addressing these challenges by initially introducing the nature of bacteriophages and describing the phage-host-dependent strategies for phage application. We also describe the effect of the long-term application of phages in natural environments and other bacterial communities. Overall, this review gathered crucial information for the future application of phages. We predict the use of phages will not be the only control strategy against pathogenic bacteria. Therefore, more studies must be done for low-risk control methods against antimicrobial-resistant bacteria.

14.
Microorganisms ; 9(4)2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33917817

RESUMO

Pectobacterium odoriferum has recently emerged as a widely infective and destructive pathogen causing soft-rot disease in various vegetables. Bacteriophage phiPccP-1 isolated from Pyeongchang, South Korea, showed lytic activity against P. odoriferum Pco14 and two other Pectobacterium species. The transmission electron microscopy and genome phylograms revealed that phiPccP-1 belongs to the Unyawovirus genus, Studiervirinae subfamily of the Autographivirinae family. Genome comparison showed that its 40,487 bp double-stranded DNA genome shares significant similarity with Pectobacterium phage DU_PP_II with the identity reaching 98% of the genome. The phiPccP-1 application significantly inhibited the development of soft-rot disease in the mature leaves of the harvested Kimchi cabbage up to 48 h after Pco14 inoculation compared to the untreated leaves, suggesting that phiPccP-1 can protect Kimchi cabbage from soft-rot disease after harvest. Remarkably, bioassays with phiPccP-1 in Kimchi cabbage seedlings grown in the growth chamber successfully demonstrated its prophylactic and therapeutic potential in the control of bacterial soft-rot disease in Kimchi cabbage. These results indicate that bacteriophage phiPccP-1 can be used as a potential biological agent for controlling soft rot disease in Kimchi cabbage.

16.
Mol Biol Rep ; 48(1): 97-104, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33433834

RESUMO

Semisulcospira gottschei is an Asian endemic species inhabiting Korea and China. However, genetic structure analysis of the resource management of this species has not been performed. To investigate the genetic diversity among populations, microsatellites can be used to determine the geographic origins of marine and freshwater species. This study investigated the genetic structures of the Korean and Chinese populations of S. gottschei based on mitochondrial DNA (mtDNA) Cytochrome oxidase subunit I (COI) and polymorphic microsatellite loci developed from Semisulcospira coreana. Analysis of the mtDNA COI sequence revealed 43 haplotypes, which indicated no gene flow between the Korean and Chinese populations. To further elucidate the genetic structures of the Korean and Chinese populations, the population genetics of S. gottschei were analyzed using nine microsatellite markers. The genetic diversity analysis showed an average of 5.25 alleles per locus, with an average allelic richness of 4.02. Excessive homozygosity was found at all loci, which was expected to be due to the presence of null alleles at all loci. Populations of S. gottschei formed two separate clusters according to pairwise FST and AMOVA. Also, the UPGMA tree, PCA, STRUCTURE, and GeneClass indicated separation of the 11 populations into two clusters: Korea and China. These results have potential use in the management, restoration, and distinction of the origin country of populations.


Assuntos
DNA Mitocondrial/genética , Gastrópodes/genética , Genética Populacional , Alelos , Animais , Fluxo Gênico , Variação Genética , Haplótipos , Repetições de Microssatélites/genética , Filogenia
17.
Ann Lab Med ; 41(1): 86-94, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32829583

RESUMO

BACKGROUND: A lineage of Klebsiella pneumoniae that produces carbapenemase-2 (KPC-2), sequence type (ST) 307, emerged in 2017. We analyzed the complete sequences of plasmids from KPC-2-producing K. pneumoniae (KPC-Kp) ST307, investigated the antimicrobial resistance conferred by this strain, and confirmed the horizontal interspecies transmission of KPC-carbapenemase-producing Enterobacteriaceae (CPE) characteristics among Enterobacteriaceae. METHODS: We performed antimicrobial susceptibility testing, PCR analysis, multilocus sequence typing, curing tests, and whole-genome sequencing to characterize plasmid-derived KPC-2-producing Enterobacteriaceae clinical isolates. RESULTS: Sequence analysis of KPC-Kp strain ST307 revealed novel plasmid-located virulence factors, including a gene cluster for glycogen synthesis. Three Enterobacteriaceae strains were identified in one patient: K. pneumoniae (CPKp1825), Klebsiella aerogenes (CPEa1826), and Escherichia coli (CPEc1827). The bla KPC-2 gene from K. pneumoniae ST307 was horizontally transmitted between these strains. The plasmids could be transferred through conjugation, because all three strains of bacteria contained the type IV secretion system, pilus genes, and tra genes for conjugal transfer. The bla KPC-2 gene was located on a truncated Tn4401 transposon. Plasmids containing the bla KPC-2 gene could not be artificially removed; thus, the three strains could not be cured. CONCLUSIONS: The ease of horizontal transfer of KPC-Kp ST307 carbapenem resistance has serious public health and epidemiological implications. This study provides a better understanding of the genetic characteristics that can contribute to the growth and spread of KPC-Kp ST307, and their association with antimicrobial resistance genes.


Assuntos
Farmacorresistência Bacteriana/genética , Klebsiella pneumoniae/genética , Plasmídeos/metabolismo , beta-Lactamases/genética , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Humanos , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/patologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Testes de Sensibilidade Microbiana , Família Multigênica , Tipagem de Sequências Multilocus , Plasmídeos/genética , Sequenciamento Completo do Genoma , beta-Lactamases/química
18.
ACS Appl Mater Interfaces ; 12(46): 51688-51698, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33164496

RESUMO

Stacked structures employing wavelength-selective organic photodiodes (OPDs) have been studied as promising alternatives to the conventional Si-based image sensors because of their color constancy. Herein, novel donor (D)-π-acceptor (A) molecules are designed, synthesized, and characterized as green-light-selective absorbers for application in organic-on-Si hybrid complementary metal-oxide-semiconductor (CMOS) color image sensors. The p-type molecules, combined with two fused-type heterocyclic donors and an electron-accepting unit, exhibit cyanine-like properties that are characterized by intense and sharp absorption. This molecular design leads to improved absorption properties, thermal stability, and higher photoelectric conversion compared to those of a molecular design based on a nonfused ring. A maximum external quantum efficiency of 66% (λmax = 550 nm) and high specific detectivity (D*) of 8 × 1013 cm Hz1/2/W are achieved in an OPD consisting of a bulk heterojunction blend with two transparent electrodes on both sides. Finally, the green-light-detection capability of the narrow-band green-selective OPD is demonstrated by the optical simulation of an organic-on-Si hybrid, stacked-type, full-color photodetector comprising the green-light-selective OPD and a bottom Si photodiode with only blue and red color filters. Based on this molecular design, further optimization of the OPDs can allow the development of various optoelectronic sensors including 3D-stacked image sensors with enhanced sensitivities to replace the conventional Si-based CMOS image sensors.

19.
J Microbiol Biotechnol ; 30(7): 974-981, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32522962

RESUMO

Sequence type 410 (ST410) of Escherichia coli is an extraintestinal pathogen associated with multi drug resistance. In this study, we aimed to investigate the horizontal propagation pathway of a highrisk clone of E. coli ST410 that produces Klebsiella pneumoniae carbapenemase (KPC). blaKPCencoding E. coli and K. pneumoniae isolates were evaluated, and complete sequencing and comparative analysis of blaKPC-encoding plasmids from E. coli and K. pneumoniae, antimicrobial susceptibility tests, polymerase chain reaction, multilocus sequence typing, and conjugal transfer of plasmids were performed. Whole-genome sequencing was performed for plasmids mediating KPC-2 production in E. coli and K. pneumoniae clinical isolates. Strains E. coli CPEc171209 and K. pneumoniae CPKp171210 were identified as ST410 and ST307, respectively. CPEc171209 harbored five plasmids belonging to serotype O8:H21, which is in the antimicrobial-resistant clade C4/H24. The CPKp171210 isolate harbored three plasmids. Both strains harbored various additional antimicrobial resistance genes. The IncX3 plasmid pECBHS_9_5 harbored blaKPC-2 within a truncated Tn4401a transposon, which also contains blaSHV-182 with duplicated conjugative elements. This plasmid displayed 100% identity with the IncX3 plasmid pKPBHS_10_3 from the K. pneumoniae CPKp171210 ST307 strain. The genes responsible for the conjugal transfer of the IncX3 plasmid included tra/trb clusters and pil genes coding the type IV pilus. ST410 can be transmitted between patients, posing an elevated risk in clinical settings. The emergence of a KPC-producing E. coli strain (ST410) is concerning because the blaKPC-2-bearing plasmids may carry treatment resistance across species barriers. Transgenic translocation occurs among carbapenem-resistant bacteria, which may spread rapidly via horizontal migration.


Assuntos
Proteínas de Bactérias/genética , Transferência Genética Horizontal , Klebsiella pneumoniae/genética , beta-Lactamases/genética , Idoso , Proteínas da Membrana Bacteriana Externa , Células Clonais , Infecção Hospitalar/microbiologia , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/microbiologia , Genótipo , Humanos , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/enzimologia , Klebsiella pneumoniae/isolamento & purificação , Masculino , Testes de Sensibilidade Microbiana , Tipagem Molecular , Tipagem de Sequências Multilocus , Plasmídeos , Insuficiência Renal Crônica/microbiologia , Sequenciamento Completo do Genoma
20.
Viruses ; 12(4)2020 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32340158

RESUMO

Bacterial fruit blotch (BFB) is an economically important disease in melons and watermelons for which no effective control method is available. Application of phytobacterium-infecting phage has been evaluated as an alternative means of preventing bacterial diseases in plants. Coating of seeds with bacteriophages infecting Acidovorax citrulli, the causal agent of BFB, is effective for controlling the disease, as shown in our previous study. We evaluated the transport of bacteriophage ACPWH from soil to the leaves of melon plants, and we also evaluated its effect on BFB. Leaves of melon plants were spray-inoculated with A. citrulli, and bacteriophage ACPWH was added to soil after symptoms had developed. ACPWH was detected by PCR in foliar tissue 8 h after addition to soil. DAPI-stained ACPWH accumulated at the leaf tip after 24 h. Melon treated with ACPWH showed 27% disease severity, compared to 80% for the non-treated control, indicating that ACPWH can be used to control BFB.


Assuntos
Bactérias/virologia , Bacteriófagos/fisiologia , Cucurbitaceae/microbiologia , Doenças das Plantas/microbiologia , Progressão da Doença , Folhas de Planta/microbiologia , Folhas de Planta/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA