Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 15(5)2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38793194

RESUMO

We investigated the impact of surface treatments on Si-based electrolyte-gated transistors (EGTs) for detecting urea. Three types of EGTs were fabricated with distinct gate electrodes (Ag, Au, Pt) using a top-down method. These EGTs exhibited exceptional intrinsic electrical properties, including a low subthreshold swing of 80 mV/dec, a high on/off current ratio of 106, and negligible hysteresis. Three surface treatment methods ((3-amino-propyl) triethoxysilane (APTES) and glutaraldehyde (GA), 11-mercaptoundecanoic acid (11-MUA), 3-mercaptopropionic acid (3-MPA)) were individually applied to the EGTs with different gate electrodes (Ag, Au, Pt). Gold nanoparticle binding tests were performed to validate the surface functionalization. We compared their detection performance of urea and found that APTES and GA exhibited the most superior detection characteristics, followed by 11-MUA and 3-MPA, regardless of the gate metal. APTES and GA, with the highest pKa among the three surface treatment methods, did not compromise the activity of urease, making it the most suitable surface treatment method for urea sensing.

2.
Biosensors (Basel) ; 14(3)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38534231

RESUMO

The sensing responses of SARS-CoV-2 spike protein using top-down-fabricated Si-based electrolyte-gated transistors (EGTs) have been investigated. An aptamer was employed as a receptor for the SARS-CoV-2 spike protein. The EGT demonstrated excellent intrinsic characteristics and higher sensitivity in the subthreshold regime compared to the linear regime. The limit of detection (LOD) was achieved as low as 0.94 pg/mL and 20 pg/mL for the current and voltage sensitivity, respectively. To analyze the sensing responses of EGT in detecting the aptamer-SARS-CoV-2 spike protein conjugate, a lumped-capacitive model with the presence of an effective dipole potential and an effective capacitance of the functionalized layer component was employed. The aptamer-functionalized EGT showed high sensitivity even in 10 mM phosphate-buffered saline (PBS) solution. These results suggest that Si-based EGTs are a highly promising method for detecting SARS-CoV-2 spike proteins.


Assuntos
Técnicas Biossensoriais , COVID-19 , Humanos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Eletrólitos , Oligonucleotídeos
3.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338991

RESUMO

Side streams and byproducts of food are established sources of natural ingredients in cosmetics. In the present study, we obtained upcycled low-molecular-weight anionic peptides (LMAPs) using byproducts of the post-yuzu-juicing process by employing an enzyme derived from Bacillus sp. For the first time, we isolated anionic peptides less than 500 Da in molecular weight from Citrus junos TANAKA seeds via hydrolysis using this enzyme. The protective effect of LMAPs against UVR-induced photoaging was evaluated using a reconstructed skin tissue (RST) model and keratinocytes. The LMAPs protected the keratinocytes by scavenging intracellular reactive oxygen species and by reducing the levels of paracrine cytokines (IL-6 and TNF-α) in UVR (UVA 2 J/cm2 and UVB 15 mJ/cm2)-irradiated keratinocytes. Additionally, the increase in melanin synthesis and TRP-2 expression in RST caused by UVR was significantly inhibited by LMAP treatment. This treatment strongly induced the expression of filaggrin and laminin-5 in UVR-irradiated RST. It also increased type I collagen expression in the dermal region and in fibroblasts in vitro. These results suggest that a hydrolytic system using the enzyme derived from Bacillus sp. can be used for the commercial production of LMAPs from food byproducts and that these LMAPs can be effective ingredients for improving photoaging-induced skin diseases.


Assuntos
Citrus , Envelhecimento da Pele , Dermatopatias , Pele/metabolismo , Citocinas/metabolismo , Dermatopatias/metabolismo , Raios Ultravioleta/efeitos adversos , Fibroblastos/metabolismo
4.
ACS Appl Mater Interfaces ; 15(34): 40191-40200, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37603713

RESUMO

The SARS-CoV-2 pandemic has increased the demand for low-cost, portable, and rapid biosensors, driving huge research efforts toward new nanomaterial-based approaches with high sensitivity. Many of them employ antibodies as bioreceptors, which have a costly development process that requires animal facilities. Recently, sybodies emerged as a new alternative class of synthetic binders and receptors with high antigen binding efficiency, improved chemical stability, and lower production costs via animal-free methods. Their smaller size is an important asset to consider in combination with ultrasensitive field-effect transistors (FETs) as transducers, which respond more intensely when biorecognition occurs near their surface. This work demonstrates the immobilization of sybodies against the spike protein of the virus on silicon surfaces, which are often integral parts of the semiconducting channel of FETs. Immobilized sybodies maintain the capability to capture antigens, even at low concentrations in the femtomolar range, as observed by fluorescence microscopy. Finally, the first proof of concept of sybody-modified FET sensing is provided using a nanoscopic silicon net as the sensitive area where the sybodies are immobilized. The future development of further sybodies against other biomarkers and their generalization in biosensors could be critical to decrease the cost of biodetection platforms in future pandemics.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Silício , Anticorpos , Microscopia de Fluorescência
5.
Biosensors (Basel) ; 13(5)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37232926

RESUMO

We experimentally demonstrate Si-based electrolyte-gated transistors (EGTs) for detecting urea. The top-down-fabricated device exhibited excellent intrinsic characteristics, including a low subthreshold swing (SS) (~80 mV/dec) and a high on/off current ratio (~107). The sensitivity, which varied depending on the operation regime, was analyzed with the urea concentrations ranging from 0.1 to 316 mM. The current-related response could be enhanced by reducing the SS of the devices, whereas the voltage-related response remained relatively constant. The urea sensitivity in the subthreshold regime was as high as 1.9 dec/pUrea, four times higher than the reported value. The extracted power consumption of 0.3 nW was extremely low compared to other FET-type sensors.


Assuntos
Eletrólitos , Ureia
6.
Biosensors (Basel) ; 12(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35049652

RESUMO

The highly sensitive detection of peanut allergens (PAs) using silicon-based electrolyte-gated transistors (Si-EGTs) was demonstrated. The Si-EGT was made using a top-down technique. The fabricated Si-EGT showed excellent intrinsic electrical characteristics, including a low threshold voltage of 0.7 V, low subthreshold swing of <70 mV/dec, and low gate leakage of <10 pA. Surface functionalization and immobilization of antibodies were performed for the selective detection of PAs. The voltage-related sensitivity (SV) showed a constant behavior from the subthreshold regime to the linear regime. The current-related sensitivity (SI) was high in the subthreshold regime and then significantly decreased as the drain current increased. The limit of detection (LOD) was calculated to be as low as 25 pg/mL based on SI characteristics, which is the lowest value reported to date in the literature for various sensor methodologies. The Si-EGT showed selective detection of PA through a non-specific control test. These results confirm that Si-EGT is a high-sensitivity and low-power biosensor for PA detection.


Assuntos
Alérgenos/análise , Arachis , Silício , Transistores Eletrônicos , Eletrólitos
7.
Sensors (Basel) ; 18(11)2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30424510

RESUMO

We report the electrical characteristics and pH responses of a Si-nanonet ion-sensitive field-effect transistor with ultra-thin parylene-H as a gate sensing membrane. The fabricated device shows excellent DC characteristics: a low subthreshold swing of 85 mV/dec, a high current on/off ratio of ~107 and a low gate leakage current of ~10-10 A. The low interface trap density of 1.04 × 1012 cm-2 and high field-effect mobility of 510 cm²V-1s-1 were obtained. The pH responses of the devices were evaluated in various pH buffer solutions. A high pH sensitivity of 48.1 ± 0.5 mV/pH with a device-to-device variation of ~6.1% was achieved. From the low-frequency noise characterization, the signal-to-noise ratio was extracted as high as ~3400 A/A with the lowest noise equivalent pH value of ~0.002 pH. These excellent intrinsic electrical and pH sensing performances suggest that parylene-H can be promising as a sensing membrane in an ISFET-based biosensor platform.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA