RESUMO
Periodontitis is a microbially-induced inflammation of the periodontium that is characterized by the destruction of the periodontal ligament (PDL) and alveolar bone and constitutes the principal cause of teeth loss in adults. Periodontal tissue regeneration can be achieved through guided tissue/bone regeneration (GTR/GBR) membranes that act as a physical barrier preventing epithelial infiltration and providing adequate time and space for PDL cells and osteoblasts to proliferate into the affected area. Electrospun nanofibrous scaffolds, simulating the natural architecture of the extracellular matrix (ECM), have attracted increasing attention in periodontal tissue engineering. Carrageenans are ideal candidates for the development of novel nanofibrous GTR/GBR membranes, since previous studies have highlighted the potential of carrageenans for bone regeneration by promoting the attachment and proliferation of osteoblasts. Herein, we report the development of bi- and tri-layer nanofibrous GTR/GBR membranes based on carrageenans and other biocompatible polymers for the regeneration of periodontal tissue. The fabricated membranes were morphologically characterized, and their thermal and mechanical properties were determined. Their periodontal tissue regeneration potential was investigated through the evaluation of cell attachment, biocompatibility, and osteogenic differentiation of human PDL cells seeded on the prepared membranes.
Assuntos
Nanofibras , Osteogênese , Adulto , Humanos , Carragenina/farmacologia , Sulfatos , Membranas Artificiais , Periodonto , Regeneração ÓsseaRESUMO
Well-defined statistical copolymers of n-hexyl isocyanate, HIC, and 3-(triethoxysilyl)propyl isocyanate, TESPI, were synthesized via coordination polymerization mechanism, employing a chiral half-titanocene complex as initiator. The monomer reactivity ratios of the statistical copolymers were calculated using linear graphical methods and the computer program COPOINT in the frame of the terminal model. The molecular and structural characteristics of the copolymers were also calculated. The kinetics of the thermal decomposition of the statistical copolymers was studied by Thermogravimetric Analysis, TGA, and Differential Thermogravimetry, DTG, and the activation energy of this process was calculated employing several theoretical models. In addition, block copolymers constituted from PHIC and PTESPI blocks were synthesized by sequential coordination polymerization. All samples were characterized by nuclear magnetic resonance, NMR, spectroscopy and size exclusion chromatography, SEC. The thermal stability of the blocks was also studied by TGA and DTG and compared to the corresponding statistical copolymers.
RESUMO
Τhis work describes the synthesis of PLA-grafted M-alginate (g-M-alginate; M: Ca2+, Co2+, Ni2+, Cu2+) aerogels. DL-lactide (LA) was attached on the surface of preformed M-alginate beads and was polymerized, using stannous octoate as catalyst and the -OH groups of the alginate backbone as initiators/points of attachment. The material properties of g-M-alginate aerogels were not affected much by grafting, because the linear PLA chains grew on the M-alginate framework like a brush and did not bridge their points of attachment as in polyurea-crosslinked M-alginate aerogels. Thus, all g-M-alginate aerogels retained the fibrous morphology of their parent M-alginate aerogels, and they were lightweight (bulk densities up to 0.24 g cm-3), macroporous/mesoporous materials with high porosities (up to 96% v/v). The BET surface areas were in the range of 154-542 m2 g-1, depending on the metal, the nature of the alginate framework and the PLA content. The latter was found at about 15% w/w for Ca- and Ni-based materials and at about 29% w/w for Co- and Cu-based materials. Overall, we have demonstrated a new methodology for the functionalization of alginate aerogels that opens the way to the synthesis of polylactide-crosslinked alginate aerogels with the use of multifunctional monomers.
RESUMO
Recent advances in the controlled RAFT polymerization of complex macromolecular architectures based on poly(N-vinyl pyrrolidone), PNVP, are summarized in this review article. Special interest is given to the synthesis of statistical copolymers, block copolymers, and star polymers and copolymers, along with graft copolymers and more complex architectures. In all cases, PNVP is produced via RAFT techniques, whereas other polymerization methods can be employed in combination with RAFT to provide the desired final products. The advantages and limitations of the synthetic methodologies are discussed in detail.
RESUMO
The cationic statistical copolymerization of n-butyl (be) and 2-chloroethyl vinyl ether (CEVE), is efficiently conducted using bis(η5-cyclopentadienyl)dimethyl zirconium (Cp2ZrMe2) in combination with tetrakis(pentafluorophenyl)borate dimethylanilinum salt [B(C6F5)4]-[Me2NHPh]+, as an initiation system. The reactivity ratios are calculated using both linear graphical and non-linear methods. Structural parameters of the copolymers are obtained by calculating the dyad sequence fractions and the mean sequence length, which are derived using the monomer reactivity ratios. The glass transition temperatures (Tg) of the copolymers are measured by Differential Scanning Calorimetry (DSC), and the results are compared with predictions based on several theoretical models. The statistical copolymers are further employed as scaffolds for the synthesis of graft copolymers having poly(vinyl ether)s as a backbone and either poly(ε-caprolactone) (PCL) or poly(l-lactide) (PLLA) as side chains. Both the grafting "onto" and the grafting "from" methodologies are employed. The reaction sequence is monitored by Size Exclusion Chromatography (SEC), NMR and IR spectroscopies. The advantages and limitations of each approach are thoroughly examined.
RESUMO
In this review, molecular brushes and other macromolecular architectures bearing a bottlebrush segment where the main chain is synthesized by ring opening metathesis polymerization (ROMP) mediated by Mo or Ru metal complexes are considered. A brief review of metathesis and ROMP is presented in order to understand the problems and the solutions provided through the years. The synthetic strategies towards bottlebrush copolymers are demonstrated and each one discussed separately. The initiators/catalysts for the synthesis of the backbone with ROMP are discussed. Syntheses of molecular brushes are presented. The most interesting properties of the bottlebrushes are detailed. Finally, the applications studied by different groups are presented.
RESUMO
The synthesis and characterization of the tetrathiomolybdatorhodium(I) monoanionic complexes [L2Rh(µ-S)2MoS2](-) (L = CO (3), P(OPh)3 (4), P(O-o-Tol)3 (P(o-CH3C6H4)3; 5), P(OMe)3 (6), P(OEt)3 (7), P(O-i-Pr)3 (8); L2 = COD (1,5-cyclooctadiene; 2), cis-dppen (cis-Ph2PCHâCHPPh2; 9), dppe (Ph2PCH2CH2PPh2; 10), dppb (Ph2P(CH2)4PPh2; 11)) is presented. The complex 2 (NEt4(+) salt) was characterized by X-ray diffraction analysis. A detailed DFT study of the electronic structures of 2-4 and 6-8 has revealed the existence of extended electron delocalization over the four-membered Rh(µ-S)2Mo ring and hence the possibility of electronic communication between the metal centers. The electronic spectra were studied with TDDFT calculations, and the main absorption band in the visible region was assigned to ν(RhâMo) electron transfer transition, which is actually a HOMO-LUMO transition. The ν(RhâMo) transition was found to correlate linearly both with Tolman's electronic parameter of the phosphite ligands and the calculated HOMO-LUMO gap of the complexes, rendering it a well-defined ligand electronic parameter, which describes the net donating ability of monodentate and bidentate ligands (CO, COD, phosphites, diphosphines). The study of the variation of Δδ((31)P) and (1)J(Rh-P) of the phosphite complexes with respect to the QALE model electronic parameters χd, πp, and Ear has succeeded in the assessment of the σ and π effects on these NMR spectral parameters.