Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomedicines ; 11(2)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36831099

RESUMO

Pathological angiogenesis, resulting from an imbalance between anti- and pro-angiogenic factors, plays a pivotal role in tumor growth, development and metastasis. The inhibition of the angiogenesis process by the VEGF/VEGFR-2/NRP-1 pathway raises interest in the search for such interaction inhibitors for the purpose of the early diagnosis and treatment of angiogenesis-dependent diseases. In this work we designed and tested peptide-based radiocompounds that selectively bind to the neuropilin-1 co-receptor and prevent the formation of the pro-angiogenic VEGF-A165/NRP-1 complex. Three biomolecules, A7R and retro-inverso DR7A peptides, and the branched peptidomimetic Lys(hArg)-Dab-Pro-Arg (K4R), conjugated with macrocyclic chelator through two linkers' types, were labeled with theranostic scandium-44 radionuclide, and studied in vitro as potential targeted radiopharmaceuticals. ELISA (enzyme-linked immunosorbent assay) studies showed no negative effect of the introduced biomolecules' changes and high NRP-1 affinity in the case of A7R- and K4R-radiocompounds and a lack affinity for DR7A-radiocompounds. All radiopeptides showed a hydrophilic nature as well as high stability against ligand exchange reactions in cysteine/histidine solutions. Unfortunately, all radiocompounds showed unsatisfactory nano-scale stability in human serum, especially for use as therapeutic radioagents. Further work is ongoing and focused on the search for angiogenesis inhibitors that are more human serum stable.

2.
Nucl Med Rev Cent East Eur ; 22(2): 56-59, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31482557

RESUMO

BACKGROUND: 44Sc is becoming attractive as a PET radionuclide due to its decay characteristics. It can be produced from 44Ca present in natural calcium with 2.08% abundance. MATERIALS AND METHODS: The targets were mostly prepared from natural CaCO3 or metallic calcium in the form of pellets. After irradiation they were dissolved in 3 M hydrochloric acid and 44Sc was separated from excess of calcium by precipitation of scandium hydroxide using ammonia. Alternatively, targets were dissolved in 11 M hydrochloric acid and 44Sc was separated by extraction chromatography on UTEVA resin. As the next step, in both processes 44Sc was further purified on a cation exchange resin. Initially, the separation procedures were developed with 46Sc as a tracer. Gamma spectrometry with a high purity germanium detector was used to determine the separation efficiency. Finally, the CaCO3 pellet with 99.2% enrichment in 44Ca was activated with protons via 44Ca(p,n)44Sc nuclear reaction. RESULTS: Altogether twenty two irradiations and separations were performed. The working procedures were developed and the quality of separated 44Sc solution was confirmed by radiolabeling of DOTATATE. The chemical purity of the product was sufficient for preclinical experiments. At the end of around 1 hour proton beam irradiation of CaCO3 pellet with 99.2% enrichment in 44Ca the obtained radioactivity of 44Sc was more than 4.8 GBq. CONCLUSION: 44Sc can be produced inexpensively with adequate yields and radionuclidic purity via 44Ca(p,n)44Sc nuclear reaction in small cyclotrons. The recovery yield in both investigated separation methods was comparable and amounted above 90%. The obtained 44Sc was pure in terms of radionuclide and chemical purity, as shown by the results of peptide radiolabeling.


Assuntos
Elementos da Série Actinoide/química , Precipitação Química , Hidróxidos/química , Radioquímica/métodos , Radioisótopos/química , Radioisótopos/isolamento & purificação , Escândio/química , Escândio/isolamento & purificação , Urânio/química , Carbonato de Cálcio/química , Ciclotrons , Marcação por Isótopo , Radioquímica/instrumentação
3.
Appl Radiat Isot ; 142: 104-112, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30273758

RESUMO

Proton and deuteron beams (15.3 and 6.8 MeV, respectively) extracted from the PETtrace medical cyclotron at the Radiopharmaceuticals Production and Research Centre in the University of Warsaw, Heavy Ion Laboratory, 28 MeV protons from the C30 cyclotron at the National Centre for Nuclear Research, Swierk, near Warsaw and 33 MeV protons from the ARRONAX accelerator, Nantes were used to produce and investigate the medically interesting Sc radioisotopes. Both natural and isotopically enriched CaCO3 and TiO2 targets were used (42Ca, 43Ca, 44Ca, 48Ca, 48Ti). The production efficiency and isotopic purity were determined and are reported here for the highest commercially available enrichments of the target material. The Thick Target Yield, Activities at the End of Bombardment (EOB) and the relative activities of produced impurities at EOB are reported for 43Sc, 44gSc, 44mSc and 47Sc produced with particle energies below 33 MeV.


Assuntos
Radioisótopos/isolamento & purificação , Compostos Radiofarmacêuticos/isolamento & purificação , Escândio/isolamento & purificação , Carbonato de Cálcio/efeitos da radiação , Ciclotrons , Deutério , Humanos , Polônia , Prótons , Titânio/efeitos da radiação
4.
Molecules ; 23(7)2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-30036947

RESUMO

The rapid increase in applications of scandium isotopes in nuclear medicine requires new efficient production routes for these radioisotopes. Recently, irradiations of calcium in cyclotrons by α, deuteron, and proton beams have been used. Therefore, effective post-irradiation separation and preconcentration of the radioactive scandium from the calcium matrix are important to obtain the pure final product in a relatively small volume. Nobias resin was used as a sorbent for effective separation of 44Sc from calcium targets. Separation was performed at pH 3 using a column containing 10 mg of resin. Scandium was eluted with 100 µL of 2 mol L-1 HCl. Particular attention was paid to the reduction of calcium concentration, presence of metallic impurities, robustness and simple automation. 44Sc was separated with 94.9 ± 2.8% yield, with results in the range of 91.7⁻99.0%. Purity of the eluate was confirmed with ICP-OES determination of metallic impurities and >99% chelation efficiency with DOTATATE, followed by >36 h radiochemical stability of the complex. A wide range of optimal conditions and robustness to target variability and suspended matter facilitates the proposed method in automatic systems for scandium isotope separation and synthesis of scandium-labeled radiopharmaceuticals.


Assuntos
Carbonato de Cálcio/química , Octreotida/síntese química , Radioisótopos/química , Escândio/química , Concentração de Íons de Hidrogênio , Octreotida/química , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Tomografia por Emissão de Pósitrons
5.
Appl Radiat Isot ; 124: 124-131, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28384503

RESUMO

The method of 100Mo metallic target preparation for production of 99mTc by proton irradiation in 100Mo(p,2n)99mTc reaction was demonstrated. For this purpose, pressing of molybdenum powder into pellets and their subsequent sintering in reductive atmosphere were applied. The influence of parameters such as molybdenum mass and time of both pressing and sintering on the 100Mo target durability was investigated. Under the optimized conditions, 100Mo metallic pellet targets with density of 9.95±0.06g/cm3 were obtained. Morphology and structure of pressed pellets before and after sintering were studied by using standard optical microscope and Scanning Electron Microscope (SEM). Nanoindentation technique was used to investigate the mechanical properties such as nanohardness and Young modulus. Prepared 100Mo pellets were successfully irradiated with protons and 99mTc was efficiently isolated.

6.
Appl Radiat Isot ; 118: 182-189, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27642728

RESUMO

The internal α-particle beam of the Warsaw Heavy Ion Cyclotron was used to produce research quantities of the medically interesting Sc radioisotopes from natural Ca and K and isotopically enriched 42Ca targets. The targets were made of metallic calcium, calcium carbonate and potassium chloride. New data on the production yields and impurities generated during the target irradiations are presented for the positron emitters 43Sc, 44gSc and 44mSc. The different paths for the production of the long lived 44mSc/44gSc in vivo generator, proposed by the ARRONAX team, using proton and deuteron beams as well as alpha-particle beams are discussed. Due to the larger angular momentum transfer in the formation of the compound nucleus in the case of the alpha particle induced reactions, the isomeric ratio of 44mSc/44gSc at a bombarding energy of 29MeV is five times larger than previously determined for a deuteron beam and twenty times larger than for proton induced reactions on enriched CaCO3 targets. Therefore, formation of this generator via the alpha-particle route seems a very attractive way to form these isotopes. The experimental data presented here are compared with theoretical predictions made using the EMPIRE evaporation code. Reasonable agreement is generally observed.

7.
EJNMMI Phys ; 2(1): 33, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26637486

RESUMO

BACKGROUND: Recently, significant interest in (44)Sc as a tracer for positron emission tomography (PET) imaging has been observed. Unfortunately, the co-emission by (44)Sc of high-energy γ rays (E γ = 1157, 1499 keV) causes a dangerous increase of the radiation dose to the patients and clinical staff. However, it is possible to produce another radionuclide of scandium-(43)Sc-having properties similar to (44)Sc but is characterized by much lower energy of the concurrent gamma emissions. This work presents the production route of (43)Sc by α irradiation of natural calcium, its separation and purification processes, and the labeling of [DOTA,Tyr3] octreotate (DOTATATE) bioconjugate. METHODS: Natural CaCO3 and enriched [(40)Ca]CaCO3 were irradiated with alpha particles for 1 h in an energy range of 14.8-30 MeV at a beam current of 0.5 or 0.25 µA. In order to find the optimum method for the separation of (43)Sc from irradiated calcium targets, three processes previously developed for (44)Sc were tested. Radiolabeling experiments were performed with DOTATATE radiobioconjugate, and the stability of the obtained (43)Sc-DOTATATE was tested in human serum. RESULTS: Studies of (nat)CaCO3 target irradiation by alpha particles show that the optimum alpha particle energies are in the range of 24-27 MeV, giving 102 MBq/µA/h of (43)Sc radioactivity which creates the opportunity to produce several GBq of (43)Sc. The separation experiments performed indicate that, as with (44)Sc, due to the simplicity of the operations and because of the chemical purity of the (43)Sc obtained, the best separation process is when UTEVA resin is used. The DOTATATE conjugate was labeled by the obtained (43)Sc with a yield >98 % at elevated temperature. CONCLUSIONS: Tens of GBq activities of (43)Sc of high radionuclidic purity can be obtainable for clinical applications by irradiation of natural calcium with an alpha beam.

8.
Int J Radiat Biol ; 84(10): 821-9, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18979317

RESUMO

PURPOSE: To determine the relationship between the relative biological effectiveness (RBE) for cell inactivation and linear energy transfer (LET) in the Bragg peak region of (12)C and (20)Ne ions. MATERIALS AND METHODS: Chinese hamster ovary (CHO-K1) cells were exposed to high LET (12)C (33.2 MeV, 20.3 MeV, 9.1 MeV at cell entrance) and (20)Ne ions (56.2 MeV, 34.7 MeV, 15 MeV at cell entrance) and to low LET x-rays. Technical details of the irradiation facility are presented which is based on the Monte Carlo simulation of the lateral spread of heavy ions as a result of the multiscattering small-angle process in physical conditions of the experimental set-up. RESULTS: RBE has been measured for LET values close to the Bragg peak maximum, i.e., 440-830 keV/microm for (12)C and for 1020-1600 keV/microm for (20)Ne ions. RBE values at several levels of survival were estimated and were found to decrease with increasing LET. The inactivation cross sections were calculated from the final slope of dose-response curves and were found to increase with increasing LET. CONCLUSIONS: The RBE decreases with increasing LET in the range between 440 and 1600 keV/microm for the two types of radiations forming a single line when plotted together, pointing towards LET as the single determinant of RBE. The inactivation cross section describing the killing efficiency of a single particle at the end of particle range comes close to the size of the cell nucleus.


Assuntos
Carbono/farmacologia , Transferência Linear de Energia , Neônio/farmacologia , Animais , Células CHO , Sobrevivência Celular/efeitos da radiação , Cricetinae , Cricetulus , Relação Dose-Resposta à Radiação , Isótopos , Fótons , Radiometria , Eficiência Biológica Relativa , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA