Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Eur J Med Chem ; 146: 318-343, 2018 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-29407960

RESUMO

The enoyl-ACP reductase InhA from the mycobacterial fatty acid biosynthesis pathway has become a target of interest for the development of new anti-tubercular drugs. This protein has been identified as essential for the survival of Mycobacterium tuberculosis, the causative agent of tuberculosis, and as the main target of two pro-drugs: isoniazid, the frontline anti-tubercular drug, and ethionamide, a second-line medicine. Since most cases of resistance to isoniazid and ethionamide result from mutations in the mycobacterial activating enzyme (KatG for isoniazid and EthA for ethionamide), research of direct InhA inhibitors, avoiding the activation step, has emerged as a promising strategy for combating tuberculosis. Thereby, InhA is drawing much attention and its three-dimensional structure has been particularly studied. A better understanding of key sites of interactions responsible for InhA inhibition arises thus as an essential tool for the rational design of new potent inhibitors. In this paper, we propose an overview of the 80 available crystal structures of wild-type and mutant InhA, in its apo form, in complex with its cofactor, with an analogue of its natural ligands (C16 fatty acid and/or NADH) or with inhibitors. We will first discuss structural and mechanistic aspects in order to highlight key features of the protein before delivering thorough inventory of structures of InhA in the presence of synthetic ligands to underline the key interactions implicated in high affinity inhibition.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Produtos Biológicos/farmacologia , Oxirredutases/antagonistas & inibidores , Oxirredutases/química , Proteínas de Bactérias/metabolismo , Produtos Biológicos/química , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Ligantes , Modelos Moleculares , Estrutura Molecular , Oxirredutases/metabolismo , Relação Estrutura-Atividade
2.
Chem Biol Drug Des ; 88(5): 740-755, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27301022

RESUMO

Inhibitors of the Mycobacterium tuberculosis enoyl-ACP reductase (InhA) are considered as potential promising therapeutics for the treatment of tuberculosis. Previously, we reported that azaisoindolinone-type compounds displayed, in vitro, inhibitory activity toward InhA. Herein, we describe chemical modifications of azaisoindolinone scaffold, the synthesis of 15 new compounds and their evaluations toward the in vitro InhA activity. Based on these results, a structure-InhA inhibitory activity relationship analysis and a molecular docking study, using the conformation of InhA found in the 2H7M crystal structure, were carried out to predict a possible mode of interaction of the best (aza)isoindolinone-type inhibitors with InhA in vitro. Then, the work was extended toward evaluations of these compounds against Mycobacterium tuberculosis (Mtb) growth, and finally, some of them were also investigated in respect of their ability to inhibit mycolic acid biosynthesis inside mycobacteria. Although, some azaisoindolinones were able to inhibit InhA activity and Mtb growth in vitro, they did not inhibit the mycolic acid biosynthesis inside Mtb.


Assuntos
Antituberculosos/química , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/antagonistas & inibidores , Ácidos Micólicos/metabolismo , Antituberculosos/síntese química , Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/genética , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/metabolismo , Isoindóis/síntese química , Isoindóis/química , Isoindóis/metabolismo , Isoindóis/farmacologia , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Relação Estrutura-Atividade , Termodinâmica
3.
Eur J Med Chem ; 101: 218-35, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26142487

RESUMO

A series of fluorene-based derivatives was synthesized and evaluated for inhibiting both InhA and Mycobacterium tuberculosis growth. These compounds were inspired by the previously reported Genz-10850 molecule, a good InhA inhibitor, but with a poor activity against M. tuberculosis growth. Structure-activity relationships were performed by introducing the following chemical modifications: 1) the piperazine ring; 2) the amide group; 3) the aryl moiety; and 4) the fluorene moiety. Among these new derivatives, one of them was more effective against both the InhA activity and mycobacterial growth, compared to the hit compound. Docking studies were also performed to rationalize activities of these derivatives. Furthermore, we showed for the first time that efflux pump inhibitors potentiated the efficacy of Genz-10850 (GEQ) derivatives against M. tuberculosis growth, demonstrating that these compounds could be substrates of some efflux pumps.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Indóis/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Oxirredutases/antagonistas & inibidores , Piperazinas/farmacologia , Antibacterianos/química , Proteínas de Bactérias/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Indóis/síntese química , Indóis/química , Modelos Moleculares , Estrutura Molecular , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/metabolismo , Oxirredutases/metabolismo , Piperazinas/síntese química , Piperazinas/química , Relação Estrutura-Atividade
4.
J Struct Biol ; 190(3): 328-37, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25891098

RESUMO

InhA is an enoyl-ACP reductase of Mycobacterium tuberculosis implicated in the biosynthesis of mycolic acids, essential constituents of the mycobacterial cell wall. To date, this enzyme is considered as a promising target for the discovery of novel antitubercular drugs. In this work, we describe the first crystal structure of the apo form of the wild-type InhA at 1.80Å resolution as well as the crystal structure of InhA in complex with the synthetic metabolite of the antitubercular drug isoniazid refined to 1.40Å. This metabolite, synthesized in the absence of InhA, is able to displace and replace the cofactor NADH in the enzyme active site. This work provides a unique opportunity to enlighten the structural adaptation of apo-InhA to the binding of the NADH cofactor or of the isoniazid adduct. In addition, a differential scanning fluorimetry study of InhA, in the apo-form as well as in the presence of NAD(+), NADH and INH-NADH was performed showing that binding of the INH-NADH adduct had a strong stabilizing effect.


Assuntos
Proteínas de Bactérias/química , Isoniazida/química , Mycobacterium tuberculosis/enzimologia , Oxirredutases/química , Biomimética/métodos , Domínio Catalítico , NAD/química , Ligação Proteica/fisiologia
5.
J Org Chem ; 78(20): 10530-3, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24067155

RESUMO

The partial sublimation of enantioenriched amino acids was performed slowly at low temperature with the aim to determine the rules of sublimation of these compounds. Although the formation of a euatmotic composition of the gaseous phase starting from DL + L mixtures of Leu, Pro, and Phe can be deduced from the enantiomeric excess of sublimates, the behavior of the kinetic conglomerate explains the results for D + L mixtures of Ala, Leu, Val, and Pro. Consequently, the enantiomeric excess of the partial sublimate is dependent not only on the studied compound but also on the composition of the starting mixture.


Assuntos
Aminoácidos/química , Fragmentos de Peptídeos/química , Sequência de Aminoácidos , Cinética , Estereoisomerismo , Temperatura
6.
Eur J Med Chem ; 52: 275-83, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22483635

RESUMO

A series of triazoles have been prepared and evaluated as inhibitors of InhA as well as inhibitors of Mycobacterium tuberculosis H(37)R(v). Several of these new compounds possess a good activity against InhA, particularly compounds 17 and 18 for which molecular docking has been performed. Concerning their activities against M. tuberculosis H(37)R(V) strain, two of them, 3 and 12, were found to be good inhibitors with MIC values of 0.50 and 0.25 µg/mL, respectively. Particularly, compound 12 presenting the best MIC value of all compounds tested (0.6 µM) is totally inactive against InhA.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Oxirredutases/antagonistas & inibidores , Triazóis/síntese química , Triazóis/farmacologia , Antituberculosos/síntese química , Antituberculosos/química , Antituberculosos/farmacologia , Proteínas de Bactérias/química , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Modelos Moleculares , Oxirredutases/química , Conformação Proteica , Triazóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA