Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Ann Neurol ; 95(5): 907-916, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38345145

RESUMO

OBJECTIVE: Microglia/macrophages line the border of demyelinated lesions in both cerebral white matter and the cortex in the brains of multiple sclerosis patients. Microglia/macrophages associated with chronic white matter lesions are thought to be responsible for slow lesion expansion and disability progression in progressive multiple sclerosis, whereas those lining gray matter lesions are less studied. Profiling these microglia/macrophages could help to focus therapies on genes or pathways specific to lesion expansion and disease progression. METHODS: We compared the morphology and transcript profiles of microglia/macrophages associated with borders of white matter (WM line) and subpial gray matter lesions (GM line) using laser capture microscopy. We performed RNA sequencing on isolated cells followed by immunocytochemistry to determine the distribution of translational products of transcripts increased in WM line microglia. RESULTS: Cells in the WM line appear activated, with shorter processes and larger cell bodies, whereas those in the GM line appear more homeostatic, with smaller cell bodies and multiple thin processes. Transcript profiling revealed 176 genes in WM lines and 111 genes in GM lines as differentially expressed. Transcripts associated with immune activation and iron homeostasis were increased in WM line microglia, whereas genes belonging to the canonical Wnt signaling pathway were increased in GM line microglia. INTERPRETATION: We propose that the mechanisms of demyelination and dynamics of lesion expansion are responsible for differential transcript expression in WM lines and GM lines, and posit that increased expression of the Fc epsilon receptor, spleen tyrosine kinase, and Bruton's tyrosine kinase, play a key role in regulating microglia/macrophage function at the border of chronic active white matter lesions. ANN NEUROL 2024;95:907-916.


Assuntos
Substância Cinzenta , Macrófagos , Microglia , Esclerose Múltipla , Substância Branca , Humanos , Microglia/metabolismo , Microglia/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Substância Cinzenta/patologia , Substância Cinzenta/metabolismo , Esclerose Múltipla/genética , Esclerose Múltipla/patologia , Esclerose Múltipla/metabolismo , Masculino , Feminino , Substância Branca/patologia , Substância Branca/metabolismo , Pessoa de Meia-Idade , Transcriptoma , Adulto , Idoso
2.
ASN Neuro ; 15: 17590914221146365, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36591943

RESUMO

The central nervous system (CNS) can be preconditioned to resist damage by peripheral pretreatment with low-dose gram-negative bacterial endotoxin lipopolysaccharide (LPS). Underlying mechanisms associated with transient protection of the cerebral cortex against traumatic brain injury include increased neuronal production of antiapoptotic and neurotrophic molecules, microglial-mediated displacement of inhibitory presynaptic terminals innervating the soma of cortical projection neurons, and synchronized firing of cortical projection neurons. However, the cell types and signaling responsible for these neuronal and microglial changes are unknown. A fundamental question is whether LPS penetrates the CNS or acts on the luminal surface of brain endothelial cells, thereby triggering an indirect parenchymal neuroprotective response. The present study shows that a low-dose intraperitoneal LPS treatment increases brain endothelial cell activation markers CD54, but does not open the blood-brain barrier or alter brain endothelial cell tight junctions as assessed by electron microscopy. NanoString nCounter transcript analyses of CD31-positive brain endothelial cells further revealed significant upregulation of Cxcl10, C3, Ccl2, Il1ß, Cxcl2, and Cxcl1, consistent with identification of myeloid differentiation primary response 88 (MyD88) as a regulator of these transcripts by pathway analysis. Conditional genetic endothelial cell gene ablation approaches demonstrated that both MyD88-dependent Toll-like receptor 4 (TLR4) signaling and Cxcl10 expression are essential for LPS-induced neuroprotection and microglial activation. These results suggest that C-X-C motif chemokine ligand 10 (CXCL10) production by endothelial cells in response to circulating TLR ligands may directly or indirectly signal to CXCR3 on neurons and/or microglia. Targeted activation of brain endothelial receptors may thus provide an attractive approach for inducing transient neuroprotection.


Assuntos
Lipopolissacarídeos , Fator 88 de Diferenciação Mieloide , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Neuroproteção , Células Endoteliais , Camundongos Knockout , Microglia/metabolismo , Camundongos Endogâmicos C57BL
3.
Acta Neuropathol Commun ; 9(1): 34, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33648591

RESUMO

Cognitive dysfunction occurs in greater than 50% of individuals with multiple sclerosis (MS). Hippocampal demyelination is a prominent feature of postmortem MS brains and hippocampal atrophy correlates with cognitive decline in MS patients. Cellular and molecular mechanisms responsible for neuronal dysfunction in demyelinated hippocampi are not fully understood. Here we investigate a mouse model of hippocampal demyelination where twelve weeks of treatment with the oligodendrocyte toxin, cuprizone, demyelinates over 90% of the hippocampus and causes decreased memory/learning. Long-term potentiation (LTP) of hippocampal CA1 pyramidal neurons is considered to be a major cellular readout of learning and memory in the mammalian brain. In acute slices, we establish that hippocampal demyelination abolishes LTP and excitatory post-synaptic potentials of CA1 neurons, while pre-synaptic function of Schaeffer collateral fibers is preserved. Demyelination also reduced Ca2+-mediated firing of hippocampal neurons in vivo. Using three-dimensional electron microscopy, we investigated the number, shape (mushroom, stubby, thin), and post-synaptic densities (PSDs) of dendritic spines that facilitate LTP. Hippocampal demyelination did not alter the number of dendritic spines. Surprisingly, dendritic spines appeared to be more mature in demyelinated hippocampi, with a significant increase in mushroom-shaped spines, more perforated PSDs, and more astrocyte participation in the tripartite synapse. RNA sequencing experiments identified 400 altered transcripts in demyelinated hippocampi. Gene transcripts that regulate myelination, synaptic signaling, astrocyte function, and innate immunity were altered in demyelinated hippocampi. Hippocampal remyelination rescued synaptic transmission, LTP, and the majority of gene transcript changes. We establish that CA1 neurons projecting demyelinated axons silence their dendritic spines and hibernate in a state that may protect the demyelinated axon and facilitates functional recovery following remyelination.


Assuntos
Disfunção Cognitiva/fisiopatologia , Doenças Desmielinizantes/fisiopatologia , Espinhas Dendríticas/ultraestrutura , Hipocampo/patologia , Hipocampo/fisiopatologia , Esclerose Múltipla/fisiopatologia , Neurônios/metabolismo , Neurônios/patologia , Animais , Astrócitos/metabolismo , Disfunção Cognitiva/etiologia , Cuprizona/administração & dosagem , Cuprizona/toxicidade , Doenças Desmielinizantes/diagnóstico por imagem , Doenças Desmielinizantes/imunologia , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Potenciação de Longa Duração , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia , Densidade Pós-Sináptica/metabolismo , Análise de Sequência de RNA
4.
Sci Rep ; 7(1): 8696, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28821749

RESUMO

Multiple Sclerosis (MS) is an immune-mediated demyelinating disease of the human central nervous system (CNS). Memory impairments and hippocampal demyelination are common features in MS patients. Our previous data have shown that demyelination alters neuronal gene expression in the hippocampus. DNA methylation is a common epigenetic modifier of gene expression. In this study, we investigated whether DNA methylation is altered in MS hippocampus following demyelination. Our results show that mRNA levels of DNA methyltransferase were increased in demyelinated MS hippocampus, while de-methylation enzymes were decreased. Comparative methylation profiling identify hypo-methylation within upstream sequences of 6 genes and hyper-methylation of 10 genes in demyelinated MS hippocampus. Genes identified in the current study were also validated in an independent microarray dataset generated from MS hippocampus. Independent validation using RT-PCR revealed that DNA methylation inversely correlated with mRNA levels of the candidate genes. Queries across cell-specific databases revealed that a majority of the candidate genes are expressed by astrocytes and neurons in mouse and human CNS. Taken together, our results expands the list of genes previously identified in MS hippocampus and establish DNA methylation as a mechanism of altered gene expression in MS hippocampus.


Assuntos
Metilação de DNA/genética , Doenças Desmielinizantes/genética , Hipocampo/patologia , Esclerose Múltipla/genética , Idoso , Animais , Ilhas de CpG/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Doenças Desmielinizantes/patologia , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Bainha de Mielina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sítio de Iniciação de Transcrição
5.
Invert Neurosci ; 15(3): 4, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26159098

RESUMO

Oligodendrocytes produce multi-lamellar myelin membranes that surround axons in the central nervous system (CNS). Preservation and generation of myelin are potential therapeutic targets for dysmyelinating and demyelinating diseases. MicroRNAs (miRNAs) play a vital role in oligodendrocyte differentiation and overall CNS development. miR-124 is a well-conserved neuronal miRNA with important roles in neuronal differentiation and function. miR-124 levels increase following loss of myelin in both human and rodent brains. While the role of neuronal miR-124 in neurogenesis has been established, its effects on axonal outgrowth and oligodendrocytes are not currently known. We therefore explored the possible effect of selective knockdown of miR-124 in Danio rerio using a morpholino-based knockdown approach. No morphological abnormalities or loss of motor neurons were detected despite loss of axonal outgrowth. Morpholino-based knockdown of miR-124 led to reciprocal increases in mRNA levels of target genes that inhibit axonal and dendritic projections. Importantly, loss of miR-124 led to decreased oligodendrocyte cell numbers and myelination of axonal projections in the ventral hindbrain. Taken together, our results add a new dimension to the existing complexity of neuron-glial relationships and highlight the utility of Danio rerio as a model system to investigate such interactions.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , MicroRNAs/metabolismo , Oligodendroglia/metabolismo , Peixe-Zebra/anatomia & histologia , Animais , Animais Geneticamente Modificados , Relação Dose-Resposta a Droga , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Larva , MicroRNAs/genética , Morfolinos/farmacologia , Oligodendroglia/efeitos dos fármacos
6.
Ann Neurol ; 73(5): 637-45, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23595422

RESUMO

OBJECTIVE: Hippocampal demyelination, a common feature of postmortem multiple sclerosis (MS) brains, reduces neuronal gene expression and is a likely contributor to the memory impairment that is found in >40% of individuals with MS. How demyelination alters neuronal gene expression is unknown. METHODS: To explore whether loss of hippocampal myelin alters expression of neuronal microRNAs (miRNAs), we compared miRNA profiles from myelinated and demyelinated hippocampi from postmortem MS brains and performed validation studies. RESULTS: A network-based interaction analysis depicts a correlation between increased neuronal miRNAs and decreased neuronal genes identified in our previous study. The neuronal miRNA miR-124 was increased in demyelinated MS hippocampi and targets mRNAs encoding 26 neuronal proteins that were decreased in demyelinated hippocampus, including the ionotrophic glutamate receptors AMPA2 and AMPA3. Hippocampal demyelination in mice also increased miR-124, reduced expression of AMPA receptors, and decreased memory performance in water maze tests. Remyelination of the mouse hippocampus reversed these changes. INTERPRETATION: We establish here that myelin alters neuronal gene expression and function by modulating the levels of the neuronal miRNA miR-124. Inhibition of miR-124 in hippocampal neurons may provide a therapeutic approach to improve memory performance in MS patients.


Assuntos
Doenças Desmielinizantes/patologia , Regulação da Expressão Gênica/fisiologia , Hipocampo/patologia , Transtornos da Memória/patologia , MicroRNAs/metabolismo , Neurônios/metabolismo , Receptores de AMPA/metabolismo , Animais , Cuprizona/toxicidade , Doenças Desmielinizantes/etiologia , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Imunossupressores/toxicidade , Transtornos da Memória/etiologia , Camundongos , MicroRNAs/genética , Inibidores da Monoaminoxidase/toxicidade , Esclerose Múltipla/induzido quimicamente , Esclerose Múltipla/complicações , Esclerose Múltipla/patologia , Mudanças Depois da Morte , RNA Mensageiro/metabolismo , Receptores de AMPA/genética , Sirolimo/toxicidade
7.
Ann Neurol ; 72(6): 918-26, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23076662

RESUMO

OBJECTIVE: Generation and differentiation of new oligodendrocytes in demyelinated white matter is the best described repair process in the adult human brain. However, remyelinating capacity falters with age in patients with multiple sclerosis (MS). Because demyelination of cerebral cortex is extensive in brains from MS patients, we investigated the capacity of cortical lesions to remyelinate and directly compared the extent of remyelination in lesions that involve cerebral cortex and adjacent subcortical white matter. METHODS: Postmortem brain tissue from 22 patients with MS (age 27-77 years) and 6 subjects without brain disease were analyzed. Regions of cerebral cortex with reduced myelin were examined for remyelination, oligodendrocyte progenitor cells, reactive astrocytes, and molecules that inhibit remyelination. RESULTS: New oligodendrocytes that were actively forming myelin sheaths were identified in 30 of 42 remyelinated subpial cortical lesions, including lesions from 3 patients in their 70s. Oligodendrocyte progenitor cells were not decreased in demyelinated or remyelinated cortices when compared to adjacent normal-appearing cortex or controls. In demyelinated lesions involving cortex and adjacent white matter, the cortex showed greater remyelination, more actively remyelinating oligodendrocytes, and fewer reactive astrocytes. Astrocytes in the white matter, but not in cortical portions of these lesions, significantly upregulate CD44, hyaluronan, and versican, molecules that form complexes that inhibit oligodendrocyte maturation and remyelination. INTERPRETATION: Endogenous remyelination of the cerebral cortex occurs in individuals with MS regardless of disease duration or chronological age of the patient. Cortical remyelination should be considered as a primary outcome measure in future clinical trials testing remyelination therapies.


Assuntos
Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Esclerose Múltipla/patologia , Regeneração/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adulto , Células-Tronco Adultas/metabolismo , Células-Tronco Adultas/patologia , Idoso , Antígenos/metabolismo , Doenças Desmielinizantes/complicações , Doenças Desmielinizantes/patologia , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Receptores de Hialuronatos/metabolismo , Masculino , Pessoa de Meia-Idade , Proteína Proteolipídica de Mielina/metabolismo , Bainha de Mielina/patologia , Fibras Nervosas Mielinizadas/patologia , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Mudanças Depois da Morte , Proteoglicanas/metabolismo , RNA Mensageiro/metabolismo
8.
Invest Ophthalmol Vis Sci ; 53(4): 1764-72, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22395890

RESUMO

PURPOSE: Retinal injuries that affect the photoreceptors and/or the retinal pigment epithelium (RPE) may result in the leakage of retinal proteins into the systemic circulation. This study was designed to determine whether an immune response is elicited after an acute retinal injury resulting in circulating anti-retinal antibodies in the serum. METHODS: Fifty laser burns of different grades (minimally visible lesion [MVL], grade II [GII], or grade III [GIII] lesions) were created in the retinas of Dutch Belted rabbits. The degree of laser burns was confirmed by fundus imaging and histology. Serum samples were collected from the animals 3 months after the retinal injury. Candidate autoantigens were identified by two-dimensional (2-D) Western blots of rabbit retinal lysate probed with sera from either control or laser-treated animals. Candidate autoantigens were further characterized by immunostaining to confirm their retinal localization. RESULTS: Seven and 11 protein spots were selected from the MVL and GII laser-treated samples, respectively, for autoantigen identification. No protein spots were detected in the GIII laser-treated samples. Four candidate autoantigens were common to both MVL and GII lesions: dihydropyrimidinase-related protein 2, fructose-bisphosphate aldolase C, chaperonin-containing T-complex polypeptide 1 subunit zeta, and pyruvate kinase isozyme. CONCLUSIONS: Laser-induced retinal injuries resulted in circulating anti-retinal antibodies that were detectable 3 months after the injury. The response appeared to vary with the severity of the laser retinal damage. The identification of the candidate antigens in this study suggest that this approach may permit future development of new diagnostic methods for retinal injuries.


Assuntos
Autoanticorpos/sangue , Autoimunidade , Queimaduras Oculares/imunologia , Fotocoagulação a Laser/efeitos adversos , Retina/imunologia , Animais , Autoanticorpos/imunologia , Autoantígenos/sangue , Autoantígenos/imunologia , Western Blotting , Modelos Animais de Doenças , Eletroforese em Gel Bidimensional , Queimaduras Oculares/sangue , Queimaduras Oculares/patologia , Imuno-Histoquímica , Coelhos , Retina/lesões , Retina/patologia , Espectrometria de Massas em Tandem
9.
Mol Vis ; 17: 779-91, 2011 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-21527995

RESUMO

PURPOSE: To identify candidate protein biomarkers in sera indicative of acute retinal injury. METHODS: We used laser photocoagulation as a model of acute retinal injury in Rhesus macaques. In a paired-control study design, we collected serum from each animal (n=6) at 4 h, 1 day, and 3 days following a mock procedure and then again following retinal laser treatment that produced mild lesions. Samples were fractionated by isoelectric focusing, digested with trypsin, and analyzed by liquid chromatography/tandem mass spectrometry (LC-MS/MS). Spectral counting was used to determine relative protein abundances and identify proteins with statistically significant differences between control and treated sera. RESULTS: Mild retinal injury was confirmed by fundus photography and histological examination. The average number of total proteins detected by LC-MS/MS was 908±82 among samples from all three time points. Following statistical analysis and employing stringent filtering criteria, a total of 19 proteins were identified as being significantly more abundant in sera following laser-induced retinal injury, relative to control sera. Many of the proteins detected were unique to one time point. However, four proteins (phosphoglycerate kinase 1, keratin 18, Lewis alpha-3-fucosyltransferase, and ephrin receptor A2) showed differences that were significant at both 4 h and 1 day after laser treatment, followed by a decrease to baseline levels by day 3. CONCLUSIONS: A serum biomarker response to mild retinal laser injury was demonstrated in a primate model. Among the proteins detected with highest significant differences, most are upregulated within 24 h, and their appearance in the serum is transient. It is conceivable that a panel of these proteins could provide a means for detecting the acute-phase response to retinal injury. Further investigation of these candidate biomarkers and their correlation to retinal damage is warranted.


Assuntos
Traumatismos Oculares/sangue , Fucosiltransferases/sangue , Queratina-18/sangue , Fosfoglicerato Quinase/sangue , Receptores da Família Eph/sangue , Retina/metabolismo , Animais , Biomarcadores/sangue , Cromatografia Líquida , Modelos Animais de Doenças , Traumatismos Oculares/genética , Feminino , Fucosiltransferases/genética , Perfilação da Expressão Gênica , Focalização Isoelétrica , Queratina-18/genética , Fotocoagulação/efeitos adversos , Macaca mulatta , Fosfoglicerato Quinase/genética , Proteômica , Receptores da Família Eph/genética , Retina/lesões , Retina/patologia , Espectrometria de Massas em Tandem , Tripsina/metabolismo
10.
Exp Eye Res ; 92(1): 67-75, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21078314

RESUMO

Primary Congenital Glaucoma (PCG) is an autosomal recessive disease caused by an abnormal development of the anterior chamber angle. Although, PCG has been linked to several genetic loci, the role that the genes at these loci or their encoded proteins play in the pathophysiology of PCG and development of the anterior chamber is not known. To identify proteins that may be altered in PCG and that may help in understanding the underlying pathophysiology of the disease, we took a global proteomics approach. Tryptic digests of the complex mixtures of proteins in aqueous humor were analyzed using Liquid Chromatography/Mass Spectrometry (LC-MS/MS). Proteins were identified by searching the data against the human subset of the UniProt database. The proteomes of aqueous humor in PCG (n = 7) and patients undergoing cataract surgery as control (n = 4) were compared based on the scan counts of comparable proteins. Using stringent filtering criteria, Apolipoprotein A-IV (APOA-IV), Albumin and Antithrombin 3 (ANT3) were detected at significantly higher levels in PCG AH compared to control, whereas Transthyretin (TTR), Prostaglandin-H2 D-isomerase (PTGDS), Opticin (OPT) and Interphotoreceptor Retinoid Binding Protein (IRBP) were detected at significantly lower levels. Many of these proteins play a role in retinoic acid (RA) binding/transport and have been implicated in the pathogenesis of neurodegenerative diseases such as Alzheimer's (AD). It is possible that similar to AD, the pathologic changes in PCG during development could be influenced by the availability of RA in the anterior chamber.


Assuntos
Humor Aquoso/metabolismo , Proteínas do Olho/metabolismo , Hidroftalmia/metabolismo , Idoso , Western Blotting , Catarata/metabolismo , Pré-Escolar , Cromatografia Líquida de Alta Pressão , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Proteômica , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA