Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 28(11): 16749-16763, 2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32549490

RESUMO

Sensorless adaptive optics is commonly used to compensate specimen-induced aberrations in high-resolution fluorescence microscopy, but requires a bespoke approach to detect aberrations in different microscopy techniques, which hinders its widespread adoption. To overcome this limitation, we propose using wavelet analysis to quantify the loss of resolution due to the aberrations in microscope images. By examining the variations of the wavelet coefficients at different scales, we are able to establish a multi-valued image quality metric that can be successfully deployed in different microscopy techniques. To corroborate our arguments, we provide experimental verification of our method by performing aberration correction experiments in both confocal and STED microscopy using three different specimens.

2.
Biomed Opt Express ; 10(1): 267-282, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30775099

RESUMO

Two-photon excitation fluorescence microscopy is widely used to study the activity of neuronal circuits. However, the fast imaging is typically constrained to a single lateral plane for a standard microscope design. Given that cortical neuronal networks in a mouse brain are complex three-dimensional structures organised in six histologically defined layers which extend over many hundreds of micrometres, there is a strong demand for microscope systems that can record neuronal signalling in volumes. Henceforth, we developed a quasi-simultaneous multiplane imaging technique combining an acousto-optic deflector and static remote focusing to provide fast imaging of neurons from different axial positions inside the cortical layers without the need for mechanical disturbance of either the objective lens or the specimen. The hardware and the software are easily adaptable to existing two-photon microscopes. Here, we demonstrated that our imaging method can record, at high speed and high image contrast, the calcium dynamics of neurons in two different imaging planes separated axially with the in-focus and the refocused planes 120 µm and 250 µm below the brain surface respectively.

3.
Apoptosis ; 20(6): 831-42, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25828882

RESUMO

Apoptin, the VP3 protein from chicken anaemia virus (CAV), induces tumour cell-specific cell death and represents a potential future anti-cancer therapeutic. In tumour but not in normal cells, Apoptin is phosphorylated and translocates to the nucleus, enabling its cytotoxic activity. Recently, the ß isozyme of protein kinase C (PKCß) was shown to phosphorylate Apoptin in multiple myeloma cell lines. However, the exact mechanism and nature of interaction between PKCß and Apoptin remain unclear. Here we investigated the physical and functional link between PKCß and CAV-Apoptin as well as with the recently identified Apoptin homologue derived from human Gyrovirus (HGyV). In contrast to HCT116 colorectal cancer cells the normal colon mucosa cell lines expressed low levels of PKCßI and showed reduced Apoptin activation, as evident by cytoplasmic localisation, decreased phosphorylation and lack of cytotoxic activity. Co-immunoprecipitation and proximity ligation assay studies identified binding of both CAV- and HGyV-Apoptin to PKCßI in HCT116 cells. Using Apoptin deletion constructs the N-terminal domain of Apoptin was found to be required for interacting with PKCßI. FRET-based PKC activity reporter assays by fluorescence lifetime imaging microscopy showed that expression of Apoptin in cancer cells but not in normal cells triggers a significant increase in PKC activity. Collectively, the results demonstrate a novel cancer specific interplay between Apoptin and PKCßI. Direct interaction between the two proteins leads to Apoptin-induced activation of PKC and consequently activated PKCßI mediates phosphorylation of Apoptin to promote its tumour-specific nuclear translocation and cytotoxic function.


Assuntos
Proteínas do Capsídeo/metabolismo , Proteína Quinase C beta/metabolismo , Núcleo Celular/metabolismo , Células HCT116 , Humanos , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA