Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 32(2): 1609-1624, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38297709

RESUMO

In this work, we proposed what we believe to be a novel scanning solution for the assessment of high-NA samples, referred to as spherical-wave illumination scanning digital holographic profilometry (SWS-DHP). This approach introduces a 2F optimization methodology, based on the measurement of the focal length of the object to determine the spherical component of the scanning. Furthermore, re-optimization of 2F, whether it needs to be operated depends on the measured object's NA to inspect more information. Meanwhile, utilizing phase space analysis shows SWS superiority in information transfer for high-NA samples compared to plane-wave illumination scanning. In addition, this method introduces a shape reconstruction algorithm with volumetric aberration compensation based on the propagation of the aberrated object and illumination waves to obtain high-quality measurements. Finally, the imaging merits of SWS-DHP were proved through simulations and were experimentally verified for the object of NA up to 0.87.

2.
Opt Express ; 30(15): 26149-26168, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-36236811

RESUMO

In this paper, we investigate a learning-based complex field recovery technique of an object from its digital hologram. Most of the previous learning-based approaches first propagate the captured hologram to the object plane and then suppress the DC and conjugate noise in the reconstruction. To the contrary, the proposed technique utilizes a deep learning network to extract the object complex field in the hologram plane directly, making it robust to the object depth variations and well suited for three-dimensional objects. Unlike the previous approaches which concentrate on transparent biological samples having near-uniform amplitude, the proposed technique is applied to more general objects which have large amplitude variations. The proposed technique is verified by numerical simulations and optical experiments, demonstrating its feasibility.

3.
Appl Opt ; 60(4): A54-A61, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33690354

RESUMO

In a digital hologram, the maximum viewing angle of a computer-generated hologram (CGH) is limited by pixel pitch due to the diffraction grating equation. Since reducing pixel size of display panel is challenging and costly, we propose a method to expand the viewing angle of a digital hologram by attaching an aligned pixelated random phase mask (PRPM) onto the CGH pattern based on analysis of simulation results. By introducing a phase-averaging process to the widely used iterative Fourier transform algorithm, an optimized CGH pattern can be obtained in conjunction with a PRPM. Based on scalar diffraction theory, viewing angle enhancement characteristics were verified by comparing the perspective views of a two-plane hologram using a virtual eye model. In addition, we performed full electromagnetic simulations that included effects due to potential fabrication errors such as misalignment, thickness variation, and internal reflections and diffractions between the CGH and random mask patterns. From the simulation results, by attaching a 1.85 µm-sized pixel pitch PRPM to a 3.7 µm CGH, the viewing angle can be easily expanded almost identical to that of a CGH with 1.85 µm-pixel pitch.

4.
Sensors (Basel) ; 22(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35009757

RESUMO

Surface reconstruction for micro-samples with large discontinuities using digital holography is a challenge. To overcome this problem, multi-incidence digital holographic profilometry (MIDHP) has been proposed. MIDHP relies on the numerical generation of the longitudinal scanning function (LSF) for reconstructing the topography of the sample with large depth and high axial resolution. Nevertheless, the method is unable to reconstruct surfaces with large gradients due to the need of: (i) high precision focusing that manual adjustment cannot fulfill and (ii) preserving the functionality of the LSF that requires capturing and processing many digital holograms. In this work, we propose a novel MIDHP method to solve these limitations. First, an autofocusing algorithm based on the comparison of shapes obtained by the LSF and the thin tilted element approximation is proposed. It is proven that this autofocusing algorithm is capable to deliver in-focus plane localization with submicron resolution. Second, we propose that wavefield summation for the generation of the LSF is carried out in Fourier space. It is shown that this scheme enables a significant reduction of arithmetic operations and can minimize the number of Fourier transforms needed. Hence, a fast generation of the LSF is possible without compromising its accuracy. The functionality of MIDHP for measuring surfaces with large gradients is supported by numerical and experimental results.

5.
Appl Opt ; 58(34): G96-G103, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31873495

RESUMO

Recently, the tabletop holographic display has been introduced to present a large 3D hologram floating over the table. When the observer looks down at the hologram, the display reconstructs upper perspectives of the object at a 45° angle. This paper presents the full imaging chain for the tabletop holographic display based on capture, processing, and reconstruction of a 360° observable hologram of the real object. Two different imaging methods, which involve lensless Fourier digital holographic recordings and the tabletop holographic display, are introduced. The first method utilizes the conventional capture approach with a side view perspective and numerical tilt correction for 45° angular mismatch between the acquisition and reconstruction systems. The second method presents a modified lensless digital Fourier holography for holographic recording of the upper perspective. Experimental results including numerical and optical reconstructions present various visual aspects of both capture approaches such as viewpoint correction, refocusing, 3D effects, and 3D deformations.

6.
Opt Express ; 26(19): 25086-25097, 2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30469616

RESUMO

We present Fourier rainbow holographic imaging approach. It involves standard laser holographic recording and novel horizontal parallax only holographic display. In the display, the rainbow effect is introduced in an illumination module by high-frequency diffraction grating and white light LED source. The display is addressed by Fourier rainbow digital hologram (FRDH) encoding defocused object field with removed spatial frequency components in one direction by hologram slitting and without spherical phase factor. Theoretically and experimentally it is shown that the method extends the viewing zone of the classical viewing window display in vertical and longitudinal directions, thus the comfort of observation is improved. It is also numerically and experimentally validated that the numerical slitting applied within FRDH generation improves reconstruction depth of the display, here up to 400 mm.

7.
Opt Express ; 24(22): 24999-25009, 2016 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-27828440

RESUMO

We demonstrate a tabletop holographic display system for simultaneously serving continuous parallax 3.2-inch 360-degree three-dimensional holographic image content to multiple observers at a 45-degree oblique viewing circumference. To achieve this, localized viewing windows are to be seamlessly generated on the 360-degree viewing circumference. In the proposed system, four synchronized high-speed digital micro-mirror displays are optically configured to comprise a single 2 by 2 multi-vision panel that enables size enlargement and time-division-multiplexing of holographic image content. Also, a specially designed optical image delivery sub-system that is composed of parabolic mirrors and an aspheric lens is designed as an essential part for achieving an enlarged 3.2-inch holographic image and a large 45-degree oblique viewing angle without visual distortion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA