RESUMO
PCV2 is a significant epidemic agricultural pathogen that causes a variety of swine diseases. PCV2 infections have significant economic impact on the swine industry, making effective strategies for rapid detection of PCV2 in pigs essential. Herein, we report on the synthesis of the so-called nano-MIPs which can be utilized for molecular recognition of PCV2. The morphology and structure of nano-MIPs were characterized using scanning electron microscopy (SEM). Nano-MIPs are spherical with sizes around 120-150 nm. Binding experiments demonstrate that the fluorescence intensity of PCV2 samples decreases proportionally to increasing the concentration of nano-MIPs due to quenching, while non-imprinted polymer nanoparticles (nano-NIPs) do not affect the signal. The Stern-Volmer constant of nano-MIPs binding to PCV2 was 1.3 × 10-3 mL/µg, whereas nano-NIPs led to 7 × 10-5 mL/µg, i.e., 1.8 orders of magnitude lower. The detection limit for binding MIP particles to PCV2 by fluorescence measurements is 47 µg/mL. This affinity test allows for designing both direct and competitive quartz crystal microbalance (QCM) assays for PCV2 leading to QCM measurements. The QCM results show nano-MIPs binding to PCV2 immobilized on the sensor surface with appreciable reproducibility. QCM sensor characteristics reveal signal saturation above around 200 µg/mL at a response of - 354 Hz and an LOD of approximately 35 µg/mL. Nano-MIPs also show selectivity factors of 2-5 for CSFV and PRRSV probably because the three viruses have similar diameters around 50 nm.
RESUMO
The increasing prevalence of diabetes and dyslipidemia poses significant health challenges, impacting millions of people globally and leading to high rates of illness and death. This study aimed to explore the potential antidiabetic and hypolipidemic effects of Plu kaow (Houttuynia cordata Thunb.) ethanolic extract (PK) in streptozotocin (STZ) induced diabetic rats, focusing on its molecular mechanisms. Diabetes was induced in fasting Long Evans rats using streptozotocin (65 mg/kg b. w.), with glibenclamide (5 mg/kg/day) used as the standard experimental drug. The treated groups received oral supplementation of PK (500 mg/kg/day) for 28 days. The study evaluated blood glucose levels, lipid status, body weight, liver, kidney, and heart function biomarkers, antioxidant activity, and histological examination of various organs. Additionally, untargeted metabolomics, cheminformatics, and molecular docking were employed to elucidate the probable mechanisms of action of PK. Based on metabolomic profiling data, the PK was found to contain various putative antidiabetic agents such as kaempferol 7-neohesperidoside, isochlorogenic acid C, rutin, datiscin, and diosmin and they have been proposed to significantly (p < 0.001) reduce blood glucose levels and modulated hyperlipidemia. PK also improved the tested liver, kidney, and heart function biomarkers and reversed damage to normal pancreatic, liver, kidney, and heart cells in histological analysis. In conclusion, PK shows promise as a potential treatment or management option for diabetes and hyperlipidemia, as well as their associated complications in diabetic rats.
RESUMO
The SARS-CoV-2 main protease, a vital enzyme for virus replication, is a potential target for developing drugs in COVID-19 treatment. Until now, three SARS-CoV-2 main protease inhibitors have been approved for COVID-19 treatment. This study explored the inhibitory potency of asymmetric imidazole-4,5-dicarboxamide derivatives against the SARS-CoV-2 main protease. Fourteen derivatives were designed based on the structure of the SARS-CoV-2 main protease active site, the hydrolysis mechanism, and the experience gained from the reported inhibitor structures. They were synthesized through a four-step procedure from benzimidazole and 2-methylbenzimidazole. SARS-CoV-2 main protease inhibition was evaluated in vitro by fluorogenic assay with lopinavir, ritonavir, and ebselen as positive references. N-(4-Chlorophenyl)-2-methyl-4-(morpholine-4-carbonyl)-1H-imidazole-5-carboxamide (5a2) exhibited the highest potency against the SARS-CoV-2 main protease with an IC50 of 4.79 ± 1.37 µM relative to ebselen with an IC50 of 0.04 ± 0.013 µM. Enzyme kinetic and molecular docking studies were carried out to clarify the inhibitory mechanism and to prove that the compound interacts at the active site. We also performed cytotoxicity assay to confirm that these compounds are not toxic to human cells.
RESUMO
Epidermal growth factor receptor (EGFR) kinase has been implicated in the uncontrolled cell growth associated with non-small cell lung cancer (NSCLC). This has prompted the development of 3 generations of EGFR inhibitors over the last 2 decades due to the rapid development of drug resistance issues caused by clinical mutations, including T790M, L858R and the double mutant T790M & L858R. In this work we report the design, preparation and biological assessment of new irreversible 2,4-diaminopyrimidine-based inhibitors of EGFR kinase. Twenty new compounds have been prepared and evaluated which incorporate a range of electrophilic moieties. These include acrylamide, 2-chloroacetamide and (2E)-3-phenylprop-2-enamide, to allow reaction with residue Cys797. In addition, more polar groups have been incorporated to provide a better balance of physical properties than clinical candidate Rociletinib. Inhibitory activities against EGFR wildtype (WT) and EGFR T790M & L858R have been evaluated along with cytotoxicity against EGFR-overexpressing (A549, A431) and normal cell lines (HepG2). Selectivity against JAK3 kinase as well as physicochemical properties determination (logD7.4 and phosphate buffer solubility) have been used to profile the compounds. We have identified 20, 21 and 23 as potent mutant EGFR inhibitors (≤20 nM), with comparable or better selectivity over WT EGFR, and lower activity at JAK3, than Osimertinib or Rociletinib. Compounds 21 displayed the best combination of EGFR mutant activity, JAK3 selectivity, cellular activity and physicochemical properties. Finally, kinetic studies on 21 were performed, confirming a covalent mechanism of action at EGFR.
Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Proliferação de Células , Desenho de Fármacos , Receptores ErbB , Neoplasias Pulmonares , Inibidores de Proteínas Quinases , Pirimidinas , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Humanos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese química , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Pirimidinas/química , Pirimidinas/farmacologia , Pirimidinas/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Relação Estrutura-Atividade , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Relação Dose-Resposta a Droga , Linhagem Celular Tumoral , Acrilamidas/farmacologia , Acrilamidas/química , Acrilamidas/síntese químicaRESUMO
The incidence of kidney disease is increasing worldwide. Rapid and cost-effective approaches for early detection help prevent this disease. Neutrophil gelatinase-associated lipocalin protein (NGAL) is a novel biomarker for acute kidney injury (AKI) and chronic kidney disease (CKD). We aimed to develop a lateral flow strip (LFS) based on a lateral flow immunoassay method (LFIA), using latex microspheres (LMs) as a color labeling to detect NGAL in urine. The performance and potential of the developed LMs-LFS at a point-of-care (POC) testing were evaluated. The results showed that LMs-LFS successfully detected urinary NGAL within 15 min with high specificity without cross-reactivity to or interference from other endogenous substances in urine. The visual limit of detection (vLOD) was 18.75 ng/mL, and the limit of detection (LOD) was 1.65 ng/mL under the optimum condition. The LMs-LFS developed in this study showed a high correlation with the enzyme-linked immunosorbent assay (ELISA) method (R 2 = 0.973, n = 60 urine specimens) for detecting NGAL in urine. The LMs-LFS remained stable for at least six months at room temperature. The LMs-LFS can be a rapid, sensitive, and specific tool for the diagnosis and follow-up of renal disorders at the POC.
RESUMO
This study focuses on enhancing the sensitivity of lateral-flow strips (LFSs) based on gold nanoparticles (AuNPs) for the detection of Neutrophil Gelatinase-Associated Lipocalin (NGAL) protein in urine samples. Several sizes of AuNP-based LFS biosensors were tested to optimize colorimetric signals for NGAL detection based on improved conjugation conditions. AuNPs of 39.8 nm diameter at pH 8 were the most sensitive for the detection of NGAL. Through systematic enhancements to the AuNP-based LFS, the study significantly improves the sensitivity, enabling the reliable detection of NGAL protein in urine samples at a level as low as 12.5 ng mL-1. These advances contribute to the refinement of diagnostic tools for the early detection of kidney injury, specifically in cases associated with the presence of NGAL protein, offering a more precise and effective screening approach.
Assuntos
Colorimetria , Ouro , Lipocalina-2 , Nanopartículas Metálicas , Ouro/química , Lipocalina-2/urina , Humanos , Nanopartículas Metálicas/química , Colorimetria/métodos , Técnicas Biossensoriais/métodos , Lipocalinas/urina , Fitas Reagentes , Limite de Detecção , Proteínas Proto-Oncogênicas/urina , Proteínas de Fase Aguda/urinaRESUMO
Baicalein, a flavone derived from Scutellaria baicalensis Georgi, exhibits potent anti-inflammatory, antiviral, and anticancer properties. Its derivative, known as 8-bromobaicalein (BB), has been found to have strong cytotoxic effect on MCF-7 human breast cancer cells. However, its limited solubility in water has hindered its potential for wider applications. To address this issue, we investigated the use of cyclodextrins specifically ßCD, 2,6-di-O-methyl-ß-cyclodextrin (DMßCD), and hydroxypropyl-ß-cyclodextrin (HPßCD) to improve the solubility of BB through inclusion complexation. During 250 ns molecular dynamics simulations, it was found that BB can form inclusion complexes with all ßCDs. These complexes exhibit two distinct orientations: chromone group insertion (C-form) and phenyl group insertion (P-form). The formation of these complexes is primarily driven by van der Waals interactions. DMßCD has the highest number of atom contacts with BB and the lowest solvent accessibility in the hydrophobic cavity. These results coincide with the highest binding affinity from the MM/GBSA-based free energy calculation method. Experimental phase solubility diagrams revealed a 1:1 stoichiometric ratio (AL type) between BB and ßCDs, in which BB/DMßCD showed the highest stability. The formation of inclusion complexes was confirmed by differential scanning calorimetry and scanning electron microscope methods. Additionally, the BB/DMßCD inclusion complex demonstrated significantly higher anticancer activity against MCF-7 human breast cancer cells compared to BB alone. These findings underscore the potential of DMßCD for formulating BB in pharmaceutical and medical applications.
Assuntos
Simulação de Dinâmica Molecular , Solubilidade , beta-Ciclodextrinas , beta-Ciclodextrinas/química , beta-Ciclodextrinas/farmacologia , Humanos , Células MCF-7 , Flavanonas/química , Flavanonas/farmacologia , 2-Hidroxipropil-beta-Ciclodextrina/química , 2-Hidroxipropil-beta-Ciclodextrina/farmacologia , Termodinâmica , Antineoplásicos/química , Antineoplásicos/farmacologiaRESUMO
Seeking a new drug has become a significant milestone in drug discovery. However, it might not be immediately used in urgent situations or during a pandemic. Acute Respiratory Distress Syndrome (ARDS) contributes to mild-to-severe symptoms in patients due to cytokine storms, leading to morbidity and mortality. Hypertension is recognized as an independent risk factor for the severity of ARDS regarding to both ACE Inhibitors (ACEIs) and Angiotensin Receptor Blockers (ARBs) treatment, although the precise mechanism remains unclear. In this study, murine macrophage cell lines (RAW264.7) and alveolar epithelial type II-like cell lines (A549) were utilized to investigate the effect of Losartan (LOS). LOS attenuated nitric oxide production in a dose-dependent manner and collectively reduced intracellular reactive oxygen species (ROS) compared to Diclofenac under LPS-stimulation conditions. For ADRS-mimicking conditions, LPS-induced inflammatory A549 cells were performed to monitor the effect of LOS. The results showed that LOS exhibited a protective effect by increasing cell viability and decreasing intracellular ROS levels. Notably, a high dose of LOS increased intracellular ROS levels. Moreover, LOS treatment downregulated NF-kappaB activation and AT1R at the protein level. Correspondingly, proinflammatory mediator cytokines (TNF-alpha and IL-8) were downregulated, but not IL-6, during LOS treatment. Hence, LOS may provide substantial benefits to ARDS patients by modulating proinflammatory cytokine production through AT1R downregulation and NF-kappaB inactivation. The mechanistic insight into LOS's anti-inflammatory effect holds promise for reducing mortality rates among ARDS patients.
RESUMO
Feline calicivirus (FCV) is a highly contagious virus that causes upper respiratory tract disease, commonly known as cat flu. It is widely distributed worldwide and poses a major threat to feline health. Therefore, it is essential to find an efficient and rapid method for detecting FCV. In this study, the colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay, using neutral red as an indicator, was developed and validated to target the ORF2 gene of FCV for the first time. Additionally, the study compared the diagnostic abilities of polymerase chain reaction (PCR), nested PCR, and RT-LAMP assays for detecting FCV in clinical samples. The optimized RT-LAMP amplification was carried out at 56.3 °C. The technique visually detected FCV within 70 min, with a limit of detection of 14.3 × 101 copies/µL, and showed no cross-reactivity with other feline pathogens. Out of 54 oropharyngeal swab samples, 17 tested positive for FCV using both nested PCR and RT-LAMP, while only one tested positive using conventional PCR. The positivity rate was higher with nested PCR and RT-LAMP (31.48%) compared to conventional PCR (1.85%). Consequently, these results demonstrated the effectiveness of the colorimetric RT-LAMP assay developed in this study as an alternative for diagnosing FCV in cats.
RESUMO
Dengue virus (DENV) infection has emerged as a global health problem, with no specific treatment available presently. Clinacanthus nutans (Burm. f.) Lindau extract has been used in traditional medicine for its anti-inflammatory and antiviral properties. We thus hypothesized C. nutans had a broad-ranged activity to inhibit DENV and the liver inflammation caused by DENV infection. The study showed that treatment using C. nutans extract during DENV infection (co-infection step) showed the highest efficiency in lowering the viral antigen concentration to 22.87 ± 6.49% at 31.25 µg/mL. In addition, the virus-host cell binding assay demonstrated that C. nutans treatment greatly inhibited the virus after its binding to Huh7 cells. Moreover, it could remarkably lower the expression of cytokine and chemokine genes, including TNF-α, CXCL10, IL-6, and IL-8, in addition to inflammatory mediator COX-2 genes. Interestingly, the activation of the NF-κB signaling cascade after C. nutans extract treatment was dramatically decreased, which could be the underlying mechanism of its anti-inflammatory activity. The HPLC profile showed that gallic acid was the bioactive compound of C. nutans extract and might be responsible for the antiviral properties of C. nutans. Taken together, our results revealed the potential of C. nutans extract to inhibit DENV infection and lower inflammation in infected cells.
RESUMO
Kerra™, a Thai traditional herbal medicine derived from the "Tak-Ka-Si-La Scripture" and composed of nine medicinal plants, has demonstrated potential antiviral properties against HIV. This study investigated the inhibitory effects of Kerra™ on HIV-1 reverse transcriptase (RT) and its ability to prevent pseudo-HIV viral infection in HEK293 cells. The results showed that Kerra™ extract achieved a 95.73 ± 4.24% relative inhibition of HIV-1 RT, with an IC50 value of 42.66 ± 8.74 µg/mL. Docking studies revealed that key phytochemicals in Kerra™, such as oleamide, formononetin, and biochanin A, interact with several residues in the RT non-nucleoside binding pocket, contributing to their inhibitory effects. Furthermore, Kerra™ was able to reduce pseudo-HIV infection in HEK293 cells at a concentration of 10 µg/mL, suggesting its potential as a supplementary treatment for HIV.
RESUMO
Bioactive compounds derived from natural products demonstrate a wide range of beneficial properties in cancer treatment. One popular approach to inhibiting cancer cell growth is by stimulating apoptosis. Interestingly, our research has discovered that traditional mushroom and isolated compounds from traditional herbs can induce apoptosis in A549 cells while inhibiting tyrosine kinase activities. We have identified two extracts from traditional mushrooms, Phallus indusiatus and Fomes rimosus (Berk.) Cooke, which exhibit promising abilities to activate apoptotic events in cells. Additionally, isolated compounds such as Chamuangone, Cannabigerol (CBG), Cannabidiol (CBD), and NP1-cyclic peptide have also demonstrated significant apoptotic activation capabilities. To further our understanding, we analyzed phosphoprotein changes in A549 cells exposed to these extracts and compounds, both with and without epidermal growth factor (EGF) stimulation. Our positive controls were two known drugs, Afatinib and Osimertinib, which are tyrosine kinase inhibitors with apoptotic stimulation abilities. In order to enrich our understanding of the kinase pathway, we conducted phosphoprotein enrichment analysis and identified altered phosphoproteins using LC-MS/MS. Across these testing conditions, we found that 1228 phosphoproteins were altered, providing valuable insights into the biochemical mechanisms underlying cell apoptosis in A549 cells through post-translational modifications of proteins. Furthermore, our findings not only shed light on the mechanisms of cell apoptosis in A549 cells but also offer promising avenues for future research and therapeutic development.
RESUMO
Lung cancer is the leading cause of cancer-related deaths worldwide with high incidence rates for new cases. Conventional cisplatin (CDDP) therapy has limitations due to severe side effects from nonspecific targeting. To address this challenge, nanomedicine offers targeted therapies. In this study, cisplatin-loaded calcium citrate nanoparticles conjugated with epidermal growth factor (CaCit@CDDP-EGF NPs) were synthesized. The resulting nanodrug had a size below 350 nm with a cation charge. Based on density functional theory (DFT), the CaCit@CDDP NP model containing two citrates substituted on two chlorides exhibited a favorable binding energy of -5.42 eV, and the calculated spectrum at 261 nm closely matched the experimental data. CaCit@CDDP-EGF NPs showed higher inhibition rates against EGFR-expressed and mutant carcinoma cells compared to those of cisplatin while displaying lower cytotoxicity to lung fibroblast cells. Integrating in vitro experiments with in silico studies, these nanoparticles hold promise as a novel nanomedicine for targeted therapy in clinical applications.
RESUMO
We present a sensitive and selective lateral flow immunoassay (LFIA) for cotinine (COT), the primary metabolite of nicotine. COT is widely recognized as a superior biomarker to evaluate tobacco smoke exposure. The LFIA uses a competitive assay format where the COT-BSA capture competes with the target COT in urine samples for binding to the monoclonal antibody against COT (mAb-COT) conjugated with gold nanoparticles (mAb-COT-AuNPs). To improve the sensitivity and selectivity of the LFIA-COT, we focused on optimizing the diameter of AuNPs, the conjugation of mAb-COT, and the concentration of the COT-BSA capture. Our findings reveal that the utilization of 40 nm AuNPs in conjugation with a concentration of 4 mg mL-1 of mAb-COT demonstrated significantly greater efficacy compared to LFAs utilizing 20 nm AuNPs. Under the optimal conditions, the LFIA-COT demonstrated sensitive detection of COT at a level of 150 ng mL-1 within 15 min, as observed by the naked eye. It possesses a linear range of 25 to 200 ng mL-1 of COT, with the limit of detection (LOD) of 11.94 ng mL-1 in human urine samples when the color intensity is analyzed using ImageJ software. Our LFIA described here is simple and requires less time for COT detection. It can be used for the rapid and quantitative detection of COT in urine samples in clinical settings.
Assuntos
Cotinina , Ouro , Limite de Detecção , Nanopartículas Metálicas , Humanos , Cotinina/urina , Nanopartículas Metálicas/química , Imunoensaio/métodos , Ouro/química , Testes Imediatos , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/químicaRESUMO
Oxyresveratrol (OXY), a natural stilbenoid in mulberry fruits, is known for its diverse pharmacological properties. However, its clinical use is hindered by low water solubility and limited bioavailability. In the present study, the inclusion complexes of OXY with ß-cyclodextrin (ßCD) and its three analogs, dimethyl-ß-cyclodextrin (DMßCD), hydroxypropyl-ß-cyclodextrin (HPßCD) and sulfobutylether-ß-cyclodextrin (SBEßCD), were investigated using in silico and in vitro studies. Molecular docking revealed two binding orientations of OXY, namely, 4',6'-dihydroxyphenyl (A-form) and 5,7-benzenediol ring (B-form). Molecular Dynamics simulations suggested the formation of inclusion complexes with ßCDs through two distinct orientations, with OXY/SBEßCD exhibiting maximum atom contacts and the lowest solvent-exposed area in the hydrophobic cavity. These results corresponded well with the highest binding affinity observed in OXY/SBEßCD when assessed using the MM/GBSA method. Beyond traditional simulation methods, Ligand-binding Parallel Cascade Selection Molecular Dynamics method was employed to investigate how the drug enters and accommodates within the hydrophobic cavity. The in silico results aligned with stability constants: SBEßCD (2060â¯M-1), HPßCD (1860â¯M-1), DMßCD (1700â¯M-1), and ßCD (1420â¯M-1). All complexes exhibited a 1:1 binding mode (AL type), with SBEßCD enhancing OXY solubility (25-fold). SEM micrographs, DSC thermograms, FT-IR and 1H NMR spectra confirm the inclusion complex formation, revealing novel surface morphologies, distinctive thermal behaviors, and new peaks. Notably, the inhibitory impact on the proliferation of breast cancer cell lines, MCF-7, exhibited by inclusion complexes particularly OXY/DMßCD, OXY/HPßCD, and OXY/SBEßCD were markedly superior compared to that of OXY alone.
Assuntos
Simulação de Acoplamento Molecular , Solubilidade , Estilbenos , beta-Ciclodextrinas , beta-Ciclodextrinas/química , Estilbenos/química , Humanos , Simulação de Dinâmica Molecular , Proliferação de Células/efeitos dos fármacos , Estrutura Molecular , Extratos Vegetais/química , Ensaios de Seleção de Medicamentos Antitumorais , Estabilidade de MedicamentosRESUMO
The increased LH levels resulting from the absence of negative feedback after castration has been linked to long-term health issues. A need exists for an alternative contraceptive agent that functions without interfering the LH pathways. This study aimed to develop antibody fragments against the follicular-stimulating hormone receptor (anti-FSHr) using phage-display technology and evaluate its effects on Sertoli cell functions. Phage clones against the extracellular domain of dog and cat FSHr selected from an antibody fragment phagemid library were analyzed for binding kinetics by surface plasmon resonance. Sertoli cells were isolated from testes of adult animals (five dogs and five cats). Efficacy test was performed by treating Sertoli cell cultures (SCCs) with anti-FSHr antibody fragments compared with untreated in triplicates. Expressions of androgen binding protein (ABP), inhibin subunit beta B (IHBB) and vascular endothelial growth factor A (VEGFA) mRNA in SCCs were quantified by RT-qPCR. The results demonstrated that the molecular weight of the purified dog and cat anti-FSHr antibody fragment was 25 kDa and 15 kDa, respectively. Based on protein molecular weight, the antibody fragment of dogs and cats was therefore, so-called single-chain variable fragments (scFv) and nanobody (nb), respectively. The binding affinity with dissociation constant (KD) was 2.32 × 10-7 M and 2.83 × 10-9 M for dog and cat anti-FSHr antibody fragments, respectively. The cross-binding kinetic interactions between the dog anti-FSHr scFv and the cat ECD of FSHr could not be fitted to the curves to determine the binding kinetics. However, the cross-binding affinity KD between the cat anti-FSHr nb and the dog ECD FSHr was 1.75 × 10-4 M. The mRNA expression of ABP, IHBB and VEGFA in SCCs was less (P < 0.05) in both dogs (12.26, 4.07 and 5.11 folds, respectively) and cats (39.53, 14.07 and 20.29 folds, respectively) treated with anti-FSHr antibody fragments, indicating the Sertoli cell functions were suppressed. In conclusion, this study demonstrated the establishment of species-specific antibody fragments against FSHr in SCCs for dogs and cats. The fragment proteins illustrate potential to be developed as non-surgical contraceptive agent targeting FSHr in companion animals.
Assuntos
Receptores do FSH , Animais , Cães , Gatos , Masculino , Receptores do FSH/metabolismo , Receptores do FSH/genética , Receptores do FSH/imunologia , Anticoncepção/veterinária , Anticoncepção/métodos , Células de Sertoli/metabolismoRESUMO
Feline immunodeficiency virus (FIV) is a common infection found in domesticated and wild cats worldwide. Despite the wealth of therapeutic understanding of the disease in humans, considerably less information exists regarding the treatment of the disease in felines. Current treatment relies on drugs developed for the related human immunodeficiency virus (HIV) and includes compounds of the popular non-nucleotide reverse transcriptase (NNRTI) class. This is despite FIV-RT being only 67% similar to HIV-1 RT at the enzyme level, increasing to 88% for the allosteric pocket targeted by NNRTIs. The goal of this project was to try to quantify how well the more extensive pharmacological knowledge available for human disease translates to felines. To this end we screened known NNRTIs and 10 diverse pyrimidine analogs identified virtually. We use this chemo-centric probe approach to (a) assess the similarity between the two related RT targets based on the observed experimental inhibition values, (b) try to identify more potent inhibitors at FIV, and (c) gain a better appreciation of the structure-activity relationships (SAR). We found the correlation between IC50s at the two targets to be strong (r2 = 0.87) and identified compound 1 as the most potent inhibitor of FIV with IC50 of 0.030 µM ± 0.009. This compared to FIV IC50 values of 0.22 ± 0.17 µM, 0.040 ± 0.010 µM and >160 µM for known anti HIV-1 RT drugs Efavirenz, Rilpivirine, and Nevirapine, respectively. This knowledge, along with an understanding of the structural origin that give rise to any differences could improve the way HIV drugs are repurposed for FIV.
Assuntos
Transcriptase Reversa do HIV , Vírus da Imunodeficiência Felina , Inibidores da Transcriptase Reversa , Animais , Inibidores da Transcriptase Reversa/farmacologia , Inibidores da Transcriptase Reversa/química , Gatos , Vírus da Imunodeficiência Felina/efeitos dos fármacos , Transcriptase Reversa do HIV/antagonistas & inibidores , Transcriptase Reversa do HIV/metabolismo , Humanos , Relação Estrutura-Atividade , Pirimidinas/química , Pirimidinas/farmacologia , Alcinos/química , Alcinos/farmacologia , HIV-1/efeitos dos fármacos , HIV-1/enzimologia , Ciclopropanos/farmacologia , Ciclopropanos/química , Simulação de Acoplamento Molecular , Benzoxazinas/química , Benzoxazinas/farmacologiaRESUMO
Among 5 types of the Christie-Atkins-Munch-Petersen factor (CAMP) of Cutibacterium acnes, CAMP1 is highly expressed in phylotype II as well as IB, and thought to be a virulence factor of opportunistic but fatal blood, soft tissue, and implant-related infections. The target of a human single-chain variable antibody fragment (scFv), recently isolated from a phage display library, has been identified as CAMP1 of phylotype II, using immunoprecipitation followed by mass spectrometry, phage display peptide biopanning, 3D-modelling, and ELISA. The IgG1 format of the antibody could enhance phagocytosis of C. acnes DMST 14916 by THP-1 human monocytes. Our results suggest that the antibody-dependent phagocytosis process is mediated by the caveolae membrane system and involves the induction of IL-1ß. This is the first report on the study of a human antibody against CAMP1 of C. acnes phylotype II, of which a potential use as therapeutic antibody against virulence C. acnes infection is postulated.
Assuntos
Imunoglobulina G , Macrófagos , Fagocitose , Humanos , Macrófagos/imunologia , Macrófagos/microbiologia , Imunoglobulina G/imunologia , Interleucina-1beta/metabolismo , Interleucina-1beta/imunologia , Células THP-1 , Fatores de Virulência/imunologia , Anticorpos Antibacterianos/imunologia , Monócitos/imunologia , Monócitos/microbiologia , Anticorpos de Cadeia Única/imunologia , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/genética , Propionibacteriaceae/imunologiaRESUMO
The purpose of this study is to assess the bioactive peptides derived from the defatted lemon basil seeds hydrolysate (DLSH) for their ability to inhibit pancreatic lipase, decrease intracellular lipid accumulation, and reduce adipogenesis. Response surface methodology (RSM) was employed to optimize trypsin hydrolysis conditions for maximizing lipase inhibitory activity (LI). A hydrolysis time of 387.06 min, a temperature of 49.03°C, and an enzyme concentration of 1.61% w/v, resulted in the highest LI with an IC50 of 368.07 µg/mL. The ultrafiltration of the protein hydrolysate revealed that the fraction below 0.65kDa exhibited the greatest LI potential. Further purification via RP-HPLC identified the Gly-Arg-Ser-Pro-Asp-Thr-His-Ser-Gly (GRSPDTHSG) peptide in the HPLC fraction F1 using mass spectrometry. The peptide was synthesized and demonstrated LI with an IC50 of 0.255 mM through a non-competitive mechanism, with a constant (Ki) of 0.61 mM. Docking studies revealed its binding site with the pancreatic lipase-colipase complex. Additionally, GRSPDTHSG inhibited lipid accumulation in 3T3-L1 cells in a dose-dependent manner without cytotoxic effects. Western blot analysis indicated downregulation of PPAR-γ and SREBP-1c levels under GRSPDTHSG treatment, while an increase in AMPK-α phosphorylation was observed, suggesting a role in regulating cellular lipid metabolism. Overall, GRSPDTHSG demonstrates potential in attenuating lipid absorption and adipogenesis, suggesting a prospective application in functional foods and nutraceuticals.
Assuntos
Células 3T3-L1 , Adipócitos , Adipogenia , Lipase , Ocimum basilicum , PPAR gama , Peptídeos , Sementes , Proteína de Ligação a Elemento Regulador de Esterol 1 , Camundongos , Animais , Adipogenia/efeitos dos fármacos , Sementes/química , PPAR gama/metabolismo , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Hidrólise , Lipase/antagonistas & inibidores , Lipase/metabolismo , Peptídeos/farmacologia , Peptídeos/química , Peptídeos/isolamento & purificação , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Ocimum basilicum/química , Regulação para Baixo/efeitos dos fármacos , Simulação de Acoplamento MolecularRESUMO
Objective: This study aimed to investigate the clinical and laboratory characteristics of naturally occurring feline infectious peritonitis (FIP) and estimate the median survival time of FIP cats treated with prednisolone to guide further therapeutic planning. Materials and Methods: In this retrospective study, data from a total of 116 cats with effusion were fully recorded. Forty-five FIP-diagnosed cats were enrolled for analysis. Results: The study findings indicate that FIP was a disease affecting cats aged 1-2 years and was highly prevalent among male cats. Clinical manifestations of FIP affected the digestive (60%), hematological (53.3%), respiratory (33.3%), neurological (6.7%), and ocular (4.4%) systems. Blood profiles revealed mild anemia, lymphopenia, thrombocytopenia, hypoalbuminemia, hyperglobulinemia, and an albumin to globulin ratio of 0.4. Fluid analysis and cytology of FIP cats demonstrated a transparent yellow fluid with a protein content of 6 gm/dl and a total nucleated cell count of approximately 5,000-10,000 cells. During the observation period, FIP cats treated with prednisolone exhibited a median survival time of 31 days. Conclusion: Confirming FIP cases can be challenging; therefore, a tentative diagnosis of FIP must be made with care. This study provided practical diagnostic tools to diagnose FIP based on clinical signs and multiple abnormalities, which allowed for more efficient and rapid detection.