Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38935128

RESUMO

Biogenic metallic nanoparticles (NPs) have garnered significant attention in recent years due to their unique properties and various applications in different fields. NPs, including gold, silver, zinc oxide, copper, titanium, and magnesium oxide NPs, have attracted considerable interest. Green synthesis approaches, utilizing natural products, offer advantages such as sustainability and environmental friendliness. The theranostics applications of these NPs hold immense significance in the fields of medicine and diagnostics. The review explores intricate cellular uptake pathways, internalization dynamics, reactive oxygen species generation, and ensuing inflammatory responses, shedding light on the intricate mechanisms governing their behaviour at a molecular level. Intriguingly, biogenic metallic NPs exhibit a wide array of applications in medicine, including but not limited to anti-inflammatory, anticancer, anti-diabetic, anti-plasmodial, antiviral properties and radical scavenging efficacy. Their potential in personalized medicine stands out, with a focus on tailoring treatments to individual patients based on these NPs' unique attributes and targeted delivery capabilities. The article culminates in emphasizing the role of biogenic metallic NPs in shaping the landscape of personalized medicine. Harnessing their unique properties for tailored therapeutics, diagnostics and targeted interventions, these NPs pave the way for a paradigm shift in healthcare, promising enhanced efficacy and reduced adverse effects.

2.
Mol Biol Rep ; 51(1): 701, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822973

RESUMO

BACKGROUND: Disabled 2 (DAB2) is a multifunctional protein that has emerged as a critical component in the regulation of tumor growth. Its dysregulation is implicated in various types of cancer, underscoring its importance in understanding the molecular mechanisms underlying tumor development and progression. This review aims to unravel the intricate molecular mechanisms by which DAB2 exerts its tumor-suppressive functions within cancer signaling pathways. METHODS AND RESULTS: We conducted a comprehensive review of the literature focusing on the structure, expression, physiological functions, and tumor-suppressive roles of DAB2. We provide an overview of the structure, expression, and physiological functions of DAB2. Evidence supporting DAB2's role as a tumor suppressor is explored, highlighting its ability to inhibit cell proliferation, induce apoptosis, and modulate key signaling pathways involved in tumor suppression. The interaction between DAB2 and key oncogenes is examined, elucidating the interplay between DAB2 and oncogenic signaling pathways. We discuss the molecular mechanisms underlying DAB2-mediated tumor suppression, including its involvement in DNA damage response and repair, regulation of cell cycle progression and senescence, and modulation of epithelial-mesenchymal transition (EMT). The review explores the regulatory networks involving DAB2, covering post-translational modifications, interactions with other tumor suppressors, and integration within complex signaling networks. We also highlight the prognostic significance of DAB2 and its role in pre-clinical studies of tumor suppression. CONCLUSION: This review provides a comprehensive understanding of the molecular mechanisms by which DAB2 exerts its tumor-suppressive functions. It emphasizes the significance of DAB2 in cancer signaling pathways and its potential as a target for future therapeutic interventions.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose , Neoplasias , Transdução de Sinais , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/genética , Animais , Transição Epitelial-Mesenquimal/genética , Progressão da Doença , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética , Carcinogênese/genética , Carcinogênese/metabolismo , Apoptose/genética
3.
Artigo em Inglês | MEDLINE | ID: mdl-38807355

RESUMO

Theranostics refers to the combination of diagnostic biomarkers with therapeutic agents that share a specific target expressed by diseased cells and tissues. Nuclear medicine is an exciting component explored for its applicability in theranostic concepts in clinical and research investigations. Nuclear theranostics is based on the employment of radioactive compounds delivering ionizing radiation to diagnose and manage certain diseases employing binding with specifically expressed targets. In the realm of personalized medicine, nuclear theranostics stands as a beacon of potential, potentially revolutionizing disease management. Studies exploring the theranostic profile of radioactive compounds have been presented in this review along with a detailed explanation of radioactive compounds and their theranostic applicability in several diseases. It furnishes insights into their applicability across diverse diseases, elucidating the intricate interplay between these compounds and disease pathologies. Light is shed on the important milestones of nuclear theranostics beginning with radioiodine therapy in thyroid carcinomas, MIBG labelled with iodine in neuroblastoma, and several others. Our perspectives have been put forth regarding the most important theranostic agents along with emerging trends and prospects.

4.
ACS Omega ; 9(12): 13534-13555, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38559954

RESUMO

Pulmonary diseases like asthma, chronic obstructive pulmonary disorder, lung fibrosis, and lung cancer pose a significant burden to global human health. Many of these complications arise as a result of exposure to particulate matter (PM), which has been examined in several preclinical and clinical trials for its effect on several respiratory diseases. Particulate matter of size less than 2.5 µm (PM2.5) has been known to inflict unforeseen repercussions, although data from epidemiological studies to back this are pending. Conventionally utilized two-dimensional (2D) cell culture and preclinical animal models have provided insufficient benefits in emulating the in vivo physiological and pathological pulmonary conditions. Three-dimensional (3D) structural models, including organ-on-a-chip models, have experienced a developmental upsurge in recent times. Lung-on-a-chip models have the potential to simulate the specific features of the lungs. With the advancement of technology, an emerging and advanced technique termed microfluidic organ-on-a-chip has been developed with the aim of identifying the complexity of the respiratory cellular microenvironment of the body. In the present Review, the role of lung-on-a-chip modeling in reproducing pulmonary complications has been explored, with a specific emphasis on PM2.5-induced pulmonary complications.

5.
Cell Biochem Biophys ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594547

RESUMO

The Disabled-2 (DAB2) protein, found in 80-90% of various tumors, including breast cancer, has been identified as a potential tumor suppressor protein. On the contrary, some hypothesis suggests that DAB2 is associated with the modulation of the Ras/MAPK pathway by endocytosing the Grb/Sos1 signaling complex, which produces oncogenes and chemoresistance to anticancer drugs, leading to increased tumor growth and metastasis. DAB2 has multiple functions in several disorders and is typically under-regulated in several cancers, making it a potential target for treatment of cancer therapy. The primary function of DAB2 is the modulation of transforming growth factor- ß (TGF-ß) mediated endocytosis, which is involved in several mechanisms of cancer development, including tumor suppression through promoting apoptosis and suppressing cell proliferation. In this review, we will discuss in detail the mechanisms through which DAB2 leads to breast cancer and various advancements in employing DAB2 in the treatment of breast cancer. Additionally, we outlined its role in other diseases. We propose that upregulating DAB2 could be a novel approach to the therapeutics of breast cancer.

6.
Blood Adv ; 8(9): 2104-2117, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38498701

RESUMO

ABSTRACT: Venous thromboembolic events are significant contributors to morbidity and mortality in patients with stroke. Neutrophils are among the first cells in the blood to respond to stroke and are known to promote deep vein thrombosis (DVT). Integrin α9 is a transmembrane glycoprotein highly expressed on neutrophils and stabilizes neutrophil adhesion to activated endothelium via vascular cell adhesion molecule 1 (VCAM-1). Nevertheless, the causative role of neutrophil integrin α9 in poststroke DVT remains unknown. Here, we found higher neutrophil integrin α9 and plasma VCAM-1 levels in humans and mice with stroke. Using mice with embolic stroke, we observed enhanced DVT severity in a novel model of poststroke DVT. Neutrophil-specific integrin α9-deficient mice (α9fl/flMrp8Cre+/-) exhibited a significant reduction in poststroke DVT severity along with decreased neutrophils and citrullinated histone H3 in thrombi. Unbiased transcriptomics indicated that α9/VCAM-1 interactions induced pathways related to neutrophil inflammation, exocytosis, NF-κB signaling, and chemotaxis. Mechanistic studies revealed that integrin α9/VCAM-1 interactions mediate neutrophil adhesion at the venous shear rate, promote neutrophil hyperactivation, increase phosphorylation of extracellular signal-regulated kinase, and induce endothelial cell apoptosis. Using pharmacogenomic profiling, virtual screening, and in vitro assays, we identified macitentan as a potent inhibitor of integrin α9/VCAM-1 interactions and neutrophil adhesion to activated endothelial cells. Macitentan reduced DVT severity in control mice with and without stroke, but not in α9fl/flMrp8Cre+/- mice, suggesting that macitentan improves DVT outcomes by inhibiting neutrophil integrin α9. Collectively, we uncovered a previously unrecognized and critical pathway involving the α9/VCAM-1 axis in neutrophil hyperactivation and DVT.


Assuntos
Integrinas , Neutrófilos , Acidente Vascular Cerebral , Molécula 1 de Adesão de Célula Vascular , Trombose Venosa , Animais , Humanos , Masculino , Camundongos , Adesão Celular , Modelos Animais de Doenças , Integrinas/metabolismo , Camundongos Knockout , Ativação de Neutrófilo , Neutrófilos/metabolismo , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/etiologia , Molécula 1 de Adesão de Célula Vascular/metabolismo , Trombose Venosa/metabolismo , Trombose Venosa/etiologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-38502243

RESUMO

A multifunctional scaffold protein termed Disabled-2 (Dab2) has recently gained attention in the scientific community and has emerged as a promising candidate in the realm of cancer research. Dab2 protein is involved in a variety of signaling pathways, due to which its significance in the pathogenesis of several carcinomas has drawn considerable attention. Dab2 is essential for controlling the advancement of cancer because it engages in essential signaling pathways such as the Wnt/ß-catenin, epidermal growth factor receptor (EGFR), and transforming growth factor-beta (TGF-ß) pathways. Dab2 can also repress epithelial-mesenchymal transition (EMT) which is involved in tumor progression with metastatic expansion and adds another layer of significance to its possible impact on cancer spread. Furthermore, the role of Dab2 in processes such as cell growth, differentiation, apoptosis, invasion, and metastasis has been explored in certain investigative studies suggesting its significance. The present review examines the role of Dab2 in the pathogenesis of various cancer subtypes including breast cancer, ovarian cancer, gastric cancer, prostate cancer, and bladder urothelial carcinoma and also sheds some light on its potential to act as a therapeutic target and a prognostic marker in the treatment of various carcinomas. By deciphering this protein's diverse signaling, we hope to provide useful insights that may pave the way for novel therapeutic techniques and tailored treatment approaches in cancer management. Preclinical and clinical trial data on the impact of Dab2 regulation in cancer have also been included, allowing us to delineate role of Dab2 in tumor suppressor function, as well as its correlation with disease stage classification and potential therapy options. However, we observed that there is very scarce data in the form of studies on the evaluation of Dab2 role and treatment function in carcinomas, and further research into this matter could prove beneficial in the generation of novel therapeutic agents for patient-centric and tailored therapy, as well as early prognosis of carcinomas.

8.
Sci Rep ; 14(1): 2363, 2024 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287048

RESUMO

Colorectal cancer (CRC) treatment strategies encompass a triad of medical interventions: surgery, radiotherapy, and chemotherapy. Among these, the use of chemotherapy, specifically 5-fluorouracil (5-FU), has become a cornerstone in CRC management. However, it is imperative to explore novel approaches that harness the synergistic potential of chemotherapy agents alongside adjunctive compounds to mitigate the severe adverse effects that often accompany treatment. In light of this pressing need, this study focuses on evaluating Kaempferol (KMP) in combination with 5-FU in a DMH-induced CRC animal model, scrutinizing its impact on haematological indices, organ health, and gastrointestinal, hepatotoxic, and nephrotoxic effects. Remarkably, KMP demonstrated haemato-protective attributes and exerted an immunomodulatory influence, effectively counteracting 5-FU-induced damage. Furthermore, organ assessments affirm the safety profile of the combined treatments while suggesting KMP's potential role in preserving the structural integrity of the intestine, and spleen. Histopathological assessments unveiled KMP's capacity to ameliorate liver injury and mitigate CRC-induced renal impairment. These multifaceted findings underscore KMP's candidacy as a promising adjunctive therapeutic option for CRC, underlining the pivotal need for personalized therapeutic strategies that concurrently optimize treatment efficacy and safeguard organ health. KMP holds tremendous promise in elevating the paradigm of CRC management.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Animais , Neoplasias Colorretais/patologia , Quempferóis/farmacologia , Apoptose , Fluoruracila/farmacologia , Antineoplásicos/efeitos adversos
9.
Med Oncol ; 41(2): 51, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195781

RESUMO

Cancer, characterized by the uncontrolled proliferation of aberrant cells, underscores the imperative for innovative therapeutic approaches. Immunotherapy has emerged as a pivotal constituent in cancer treatment, offering improved prognostic outcomes for a substantial patient cohort. Noteworthy for its precision, immunotherapy encompasses strategies such as adoptive cell therapy and checkpoint inhibitors, orchestrating the immune system to recognize and selectively target malignant cells. Exploiting the specificity of the immune response renders immunotherapy efficacious, as it selectively targets the body's immune milieu. Diverse mechanisms underlie cancer immunotherapies, leading to distinct toxicity profiles compared to conventional treatments. A remarkable clinical stride in the anticancer resources is immunotherapy. Remarkably, certain recalcitrant cancers like skin malignancies exhibit resistance to radiation or chemotherapy, yet respond favorably to immunotherapeutic interventions. Notably, combination therapies involving chemotherapy and immunotherapy have exhibited synergistic effects, enhancing overall therapeutic efficacy. Understanding the pivotal role of immunotherapy elucidates its complementary value, bolstering the therapeutic landscape. In this review, we elucidate the taxonomy of cancer immunotherapy, encompassing adoptive cell therapy and checkpoint inhibitors, while scrutinizing their distinct adverse event profiles. Furthermore, we expound on the unprecedented potential of immunogenic vaccines to bolster the anticancer immune response. This comprehensive analysis underscores the significance of immunotherapy in modern oncology, unveiling novel prospects for tailored therapeutic regimens.


Assuntos
Imunoterapia , Neoplasias Cutâneas , Humanos , Oncologia , Terapia Combinada
10.
Curr Drug Res Rev ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37921214

RESUMO

BACKGROUND: Patents and exclusive rights on reference biologics contribute to the emergence of biosimilars. Regulatory bodies, such as the Food and Drug Administration (FDA), World Health Organization (WHO), and EMA (European Medicines Agency) for assessing clinical safety, effectiveness, and consequences between biosimilars and reference medications, have established guidelines. Since generic small molecules from reference can be easily swapped, biosimilars cannot be used interchangeably and may not always indicate interchangeability due to highly restrictive properties. It can be replaced with a reference without the healthcare provider's help under the interchangeability context. OBJECTIVE: The purpose of our study is to analyze and compare evidence-based clinical safety, therapeutic potential, and importance (outcomes) of several biosimilars with their references along with clinical uses in chronic diseases. METHODS: Through a comprehensive systemic literature review of more than 100 articles involving medicinally important drugs whose bio-similarity works optimally, safety-efficacy parameters have been analyzed. Analysis of biosimilar usage, approval, and safety-efficacy aspects are majorly focused upon herein in this review. RESULTS: From this systemic review, it can be stated that the majority of biosimilars are clinically and statistically equivalent to their originators. As biosimilars have good safety-efficacy aspects with lower prices, their utilization can be more encouraged, which was already done by the FDA with the establishment of a public online database entitled "Purple Book," which includes all information regarding biological drugs. CONCLUSION: To conclude, we suggest widespread use of high-grade biosimilars in clinical practice, maybe via changing, exchanging, or switching, with appropriate clinical monitoring and pharmacovigilance to improve patient accessibility to modern medicines, as it provides similar efficacy and safety parameters across all the accumulated clinical trials and studies.

11.
Med Oncol ; 40(11): 334, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37855910

RESUMO

Colorectal cancer (CRC) is a complex disease characterized by genetic and epigenetic alterations, playing a crucial role in its development and progression. This review aims to provide insights into the emerging landscape of these alterations in CRC pathogenesis to develop effective diagnostic tools and targeted therapies. Genetic alterations in signaling pathways such as Wnt/ß-catenin, and PI3K/Akt/mTOR are pivotal in CRC development. Genetic profiling has identified distinct molecular subtypes, enabling personalized treatment strategies. Epigenetic modifications, including DNA methylation and histone modifications, also contribute to CRC pathogenesis by influencing critical cellular processes through gene silencing or activation. Non-coding RNAs have emerged as essential players in epigenetic regulation and CRC progression. Recent research highlights the interplay between genetic and epigenetic alterations in CRC. Genetic mutations can affect epigenetic modifications, leading to dysregulated gene expression and signaling cascades. Conversely, epigenetic changes can modulate genetic expression, amplifying or dampening the effects of genetic alterations. Advancements in understanding pathogenic pathways have potential clinical applications. Identifying genetic and epigenetic markers as diagnostic and prognostic biomarkers promises more accurate risk assessment and early detection. Challenges remain, including validating biomarkers and developing robust therapeutic strategies through extensive research and clinical trials. The dynamic nature of genetic and epigenetic alterations necessitates a comprehensive understanding of their temporal and spatial patterns during CRC progression. In conclusion, the genetic and epigenetic landscape of CRC is increasingly being unraveled, providing valuable insights into its pathogenesis. Integrating genetic and epigenetic knowledge holds great potential for improving diagnostics, prognostics, and personalized therapies in CRC. Continued research efforts are vital to translate these findings into clinical practice, ultimately improving patient outcomes.


Assuntos
Neoplasias Colorretais , Epigênese Genética , Humanos , Neoplasias Colorretais/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Metilação de DNA , Biomarcadores/metabolismo , Regulação Neoplásica da Expressão Gênica
12.
Cell Mol Neurobiol ; 43(8): 3847-3884, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37725199

RESUMO

Alzheimer's disease (AD) is the primary cause of dementia and is characterized by the death of brain cells due to the accumulation of insoluble amyloid plaques, hyperphosphorylation of tau protein, and the formation of neurofibrillary tangles within the cells. AD is also associated with other pathologies such as neuroinflammation, dysfunction of synaptic connections and circuits, disorders in mitochondrial function and energy production, epigenetic changes, and abnormalities in the vascular system. Despite extensive research conducted over the last hundred years, little is established about what causes AD or how to effectively treat it. Given the severity of the disease and the increasing number of affected individuals, there is a critical need to discover effective medications for AD. The US Food and Drug Administration (FDA) has approved several new drug molecules for AD management since 2003, but these drugs only provide temporary relief of symptoms and do not address the underlying causes of the disease. Currently, available medications focus on correcting the neurotransmitter disruption observed in AD, including cholinesterase inhibitors and an antagonist of the N-methyl-D-aspartate (NMDA) receptor, which temporarily alleviates the signs of dementia but does not prevent or reverse the course of AD. Research towards disease-modifying AD treatments is currently underway, including gene therapy, lipid nanoparticles, and dendrimer-based therapy. These innovative approaches aim to target the underlying pathological processes of AD rather than just managing the symptoms. This review discusses the novel aspects of pathogenesis involved in the causation of AD of AD and in recent developments in the therapeutic armamentarium for the treatment of AD such as gene therapy, lipid nanoparticles, and dendrimer-based therapy, and many more.


Assuntos
Doença de Alzheimer , Dendrímeros , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Dendrímeros/metabolismo , Dendrímeros/uso terapêutico , Inibidores da Colinesterase , Emaranhados Neurofibrilares/metabolismo , Encéfalo/metabolismo , Peptídeos beta-Amiloides/metabolismo
13.
Arch Virol ; 168(10): 252, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37710056

RESUMO

SARS-CoV-2, the virus responsible for COVID-19, has caused numerous deaths worldwide and poses significant challenges. Researchers have recently studied a new antiviral drug called molnupiravir for treating COVID-19. This review examines the causes and immunopathogenesis of COVID-19, as well as the role of molnupiravir in its treatment. Molnupiravir is a prodrug of ß-D-N4-hydroxyctytidine (NHC) and has demonstrated activity against various viruses, including MERS-CoV, SARS-CoV, SARS-CoV-2, and influenza virus. The active form of molnupiravir, NHC triphosphate, acts as a nucleoside analog that disrupts viral replication by causing mutations in the viral RNA, thereby inhibiting viral growth. This review summarizes the results of multiple clinical trials that have evaluated the effectiveness of molnupiravir against SARS-CoV-2 and its variants. Animal studies have also shown that molnupiravir significantly reduces the viral load and prevents transmission to other animals. Overall, molnupiravir has demonstrated strong efficacy and reasonable safety, reducing hospitalization rates by nearly 50% among COVID-19-positive individuals at risk of complications. Patients in clinical settings have tolerated molnupiravir well and experienced positive outcomes, such as clearance of viral RNA, decreased viral load, and reduced hospitalization rates. Additionally, compared to a placebo, molnupiravir has been associated with lower mortality rates. Therefore, molnupiravir can be a beneficial drug to treat patients suffering from SARS-CoV-2, and further studies can provide more information about its safety and efficacy.


Assuntos
COVID-19 , Animais , Antivirais/uso terapêutico , SARS-CoV-2 , Hidroxilaminas
14.
Crit Rev Oncol Hematol ; 190: 104085, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37536448

RESUMO

Mantle cell lymphoma (MCL) is a rare, aggressive subtype of non-Hodgkin's lymphoma (NHL), accounting for 5% of all cases. Due to its virulence factor, it is an incurable disease and keeps relapsing despite an intensive treatment regimen. Advancements in research and drug discovery have shifted the treatment strategy from conventional chemotherapy to targeted agents and immunotherapies. The establishment of the role of Bruton tyrosine kinase led to the development of ibrutinib, a first-generation BTK inhibitor, and its successors. A conditioning regimen based immunotherapeutic agent like ibritumumob, has also demonstrated a viable response with a favorable toxicity profile. Brexucabtagene Autoleucel, the only approved CAR T-cell therapy, has proven advantageous for relapsed/refractory MCL in both children and adults. This article reviews certain therapies that could help update the current approach and summarizes a few miscellaneous agents, which, seldom studied in trials, could alleviate the regression observed in traditional therapies. DATA AVAILABILITY: The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.


Assuntos
Antineoplásicos , Linfoma de Célula do Manto , Linfoma não Hodgkin , Criança , Adulto , Humanos , Linfoma de Célula do Manto/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Linfoma não Hodgkin/tratamento farmacológico , Fatores Imunológicos/uso terapêutico
15.
Naunyn Schmiedebergs Arch Pharmacol ; 396(11): 2861-2880, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37266588

RESUMO

Pulmonary infections have been a leading etiology of morbidity and mortality worldwide. Upper and lower respiratory tract infections have multifactorial causes, which include bacterial, viral, and rarely, fungal infections. Moreover, the recent emergence of SARS-CoV-2 has created havoc and imposes a huge healthcare burden. Drug and vaccine development against these pulmonary pathogens like respiratory syncytial virus, SARS-CoV-2, Mycobacteria, etc., requires a systematic set of tools for research and investigation. Currently, in vitro 2D cell culture models are widely used to emulate the in vivo physiologic environment. Although this approach holds a reasonable promise over pre-clinical animal models, it lacks the much-needed correlation to the in vivo tissue architecture, cellular organization, cell-to-cell interactions, downstream processes, and the biomechanical milieu. In view of these inadequacies, 3D cell culture models have recently acquired interest. Mammalian embryonic and induced pluripotent stem cells may display their remarkable self-organizing abilities in 3D culture, and the resulting organoids replicate important structural and functional characteristics of organs such the kidney, lung, gut, brain, and retina. 3D models range from scaffold-free systems to scaffold-based and hybrid models as well. Upsurge in organs-on-chip models for pulmonary conditions has anticipated encouraging results. Complexity and dexterity of developing 3D culture models and the lack of standardized working procedures are a few of the setbacks, which are expected to be overcome in the coming times. Herein, we have elaborated the significance and types of 3D cell culture models for scrutinizing pulmonary infections, along with the in vitro techniques, their applications, and additional systems under investigation.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Técnicas de Cultura de Células/métodos , Pulmão , Organoides , Mamíferos
16.
Med Oncol ; 40(7): 200, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37294501

RESUMO

Immuno-oncology has revolutionized cancer treatment and has opened up new opportunities for developing vaccination methods. DNA-based cancer vaccines have emerged as a promising approach to activating the bodily immune system against cancer. Plasmid DNA immunizations have shown a favorable safety profile and there occurs induction of generalized as well as tailored immune responses in preclinical and early-phase clinical experiments. However, these vaccines have notable limitations in immunogenicity and heterogeneity and these require refinements. DNA vaccine technology has been focusing on improving vaccine efficacy and delivery, with parallel developments in nanoparticle-based delivery systems and gene-editing technologies such as CRISPR/Cas9. This approach has showcased great promise in enhancing and tailoring the immune response to vaccination. Strategies to enhance the efficacy of DNA vaccines include the selection of appropriate antigens, optimizing insertion in a plasmid, and studying combinations of vaccines with conventional strategies and targeted therapies. Combination therapies have attenuated immunosuppressive activities in the tumor microenvironment and enhanced the capability of immune cells. This review provides an overview of the current framework of DNA vaccines in oncology and focuses on novel strategies, including established combination therapies and those still under development.The challenges that oncologists, scientists, and researchers need to overcome to establish DNA vaccines as an avant-garde approach to defeating cancer, are also emphasized. The clinical implications of the immunotherapeutic approaches and the need for predictive biomarkers have also been reviewed upon. We have also tried to extend the role of Neutrophil extracellular traps (NETs) to the DNA vaccines. The clinical implications of the immunotherapeutic approaches have also been reviewed upon. Ultimately, refining and optimizing DNA vaccines will enable harnessing the immune system's natural ability to recognize and eliminate cancer cells, leading the world towards a revolution in cancer cure.


Assuntos
Vacinas Anticâncer , Neoplasias , Vacinas de DNA , Humanos , Vacinas de DNA/uso terapêutico , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Imunoterapia/métodos , Vacinas Anticâncer/uso terapêutico , Terapia Combinada , Microambiente Tumoral
17.
Crit Rev Oncol Hematol ; 188: 104034, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37257732

RESUMO

BACKGROUND AND OBJECTIVE: Aflibercept; a decoy receptor for vascular endothelial growth factors (VEGFs) and placental growth factor (PLGF), in combination with FOLFIRI (leucovorin calcium, fluorouracil, irinotecan hydrochloride) chemotherapy regime, was FDA approved in 2012 as second-line salvage chemotherapy for metastatic colorectal cancer (mCRC). This is the first systematic review, and meta-analysis-based evidence to determine the efficacy and safety of Aflibercept plus FOLFIRI regimen pooling randomized controlled trials and single-arm studies. METHOD: PubMed, Cochrane library, Embase, and Clinical trial.gov were systematically searched for published randomized controlled trials, single-arm studies, and national patient programs on aflibercept plus FOLFIRI chemotherapy for the treatment of mCRC till 11/10/2022. RESULT: Ten studies met the inclusion criteria comprising 1075 patients for efficacy studies and 2027 patients for safety studies. The pooled prevalences were 18% (95% CI, 5%-37%, p = 0.00) for 12 m PFS and 61% (95% CI, 53-68%, p = 0.00) for 12 m OS. The pooled prevalences were 69% (95% CI, 55-82%, p = 0.00) for any grade 3-4 toxicities, 10% (95% CI, 5-16%, p = 0.00) for grade 3-4 diarrhea, 13% (95% CI, 5-24%, p = 0.00) for grade 3-4 hypertension, 31% (95% CI, 22-40%, p = 0.00) for grade 3-4 neutropenia and 5% (95% CI, 2-7%, p = 0.00) for grade 3-4 venous thromboembolic event. CONCLUSION: Our meta-analysis shows that the aflibercept plus FOLFIRI combination shows better survival efficacies however; it is also associated with more high-grade adverse events.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Neoplasias Retais , Humanos , Feminino , Neoplasias Colorretais/patologia , Camptotecina/efeitos adversos , Fator de Crescimento Placentário/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto , Neoplasias do Colo/tratamento farmacológico , Receptores de Fatores de Crescimento do Endotélio Vascular , Proteínas Recombinantes de Fusão/efeitos adversos , Fluoruracila/efeitos adversos , Leucovorina/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos
18.
Med Oncol ; 40(5): 135, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37014489

RESUMO

Cancer immunotherapy is one of the recently developed cancer treatment modalities. When compared with conventional anticancer drug regimens, immunotherapy has shown significantly better outcomes in terms of quality of life and overall survival. It incorporates a wide range of immunomodulatory modalities that channel the effects of the immune system either by broadly modulating the host immune system or by accurately targeting distinct tumor antigens. One such treatment modality that has gained interest is cancer vaccine therapy which acts by developing antibodies against tumor cells. Cancer vaccines target individual peptides or groups of antigens that are released by tumor cells and presented by the APCs. This also initiates an effective process to activate the host immune responses. Studies on various types of cancer vaccines are conducted, out of which only few are approved by FDA for clinical uses. Despite of documented safety and efficacy of conventional chemotherapy and cancer vaccines, individually they did not produce substantial results in eradication of the cancer as a monotherapy. Hence, the combination approach holds the extensive potential to provide significant improvement in disease outcomes. Certain chemotherapy has immunomodulatory effects and is proven to synergize with cancer vaccines thereby enhancing their anti-tumor activities. Chemotherapeutic agents are known to have immunostimulatory mechanisms apart from its cytotoxic effect and intensify the anti-tumor activities of vaccines by various mechanisms. This review highlights various cancer vaccines, their mechanism, and how their activity gets affected by chemotherapeutic agents. It also aims at summarizing the evidence-based outcome of the combination approach of a cancer vaccine with chemotherapy and a brief on future aspects.


Assuntos
Vacinas Anticâncer , Imunoterapia , Neoplasias , Humanos , Neoplasias/prevenção & controle , Antígenos de Neoplasias , Imunoterapia/métodos , Antineoplásicos/farmacologia
19.
Curr Pharm Biotechnol ; 24(15): 1847-1858, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37069718

RESUMO

Lipids have received less attention than nucleic acids and proteins, which play a major role in building up the cell. They are a complex group of biomolecules varying in structure and function whose complexity can only be revealed by refining the present analytical tools. Lipogenesis is critical for tumor growth as it has been observed that FA (Fatty Acid) synthesis increases in many cancers. In this review, we have detailed the causes and concerns for considering lipids as a trademark for cancer, including other events such as mutations, epigenetic changes, chromosomal rearrangements, and hormonal stimulations. The process of biomarker development can be heightened from the critical changes observed in lipid profiling that occur in the reprogramming of lipid metabolism. The cancer alterations that occur during lipid metabolism and the expression of various genes during this process have been discussed in detail. The routes through which cancer cells source lipids for their nourishment and energy need and how FA synthesis contributes to this are discussed. The various pathways involved in the metabolism of lipid, which has the potential to be therapeutic targets, are highlighted. Also, the various driving factors critical for lipid metabolism alterations and the major role played by lipids in cancer and ways of targeting it are critically analyzed.


Assuntos
Metabolismo dos Lipídeos , Neoplasias , Humanos , Ácidos Graxos/metabolismo , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Lipogênese , Biomarcadores/metabolismo
20.
Biochem Pharmacol ; 210: 115461, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36828272

RESUMO

Neurodegenerative diseases (NDs) such as Alzheimer's, Parkinson's, Multiple Sclerosis, Hereditary Spastic Paraplegia, and Amyotrophic Lateral Sclerosis have emerged as the most dreaded diseases due to a lack of precise diagnostic tools and efficient therapies. Despite the fact that the contributing factors of NDs are still unidentified, mounting evidence indicates the possibility that genetic and cellular changes may lead to the significant production of abnormally misfolded proteins. These misfolded proteins lead to damaging effects thereby causing neurodegeneration. The association between Neurite outgrowth factor (Nogo) with neurological diseases and other peripheral diseases is coming into play. Three isoforms of Nogo have been identified Nogo-A, Nogo-B and Nogo-C. Among these, Nogo-A is mainly responsible for neurological diseases as it is localized in the CNS (Central Nervous System), whereas Nogo-B and Nogo-C are responsible for other diseases such as colitis, lung, intestinal injury, etc. Nogo-A, a membrane protein, had first been described as a CNS-specific inhibitor of axonal regeneration. Several recent studies have revealed the role of Nogo-A proteins and their receptors in modulating neurite outgrowth, branching, and precursor migration during nervous system development. It may also modulate or affect the inhibition of growth during the developmental processes of the CNS. Information about the effects of other ligands of Nogo protein on the CNS are yet to be discovered however several pieces of evidence have suggested that it may also influence the neuronal maturation of CNS and targeting Nogo-A could prove to be beneficial in several neurodegenerative diseases.


Assuntos
Proteínas da Mielina , Doenças Neurodegenerativas , Humanos , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismo , Proteínas Nogo , Regeneração Nervosa/fisiologia , Fatores de Crescimento Neural , Receptores Nogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA