Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Appl Opt ; 62(14): 3737-3746, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37706991

RESUMO

Measurement of chemical species and temperature mapping in flames is essential to understanding the combustion process. Multiple cameras are conventionally employed for measurement in such scenarios making the experimental setup not only cost-intensive but also challenging. To circumvent this, structured illumination (SI)-based methods are reported for multispecies chemiluminescence (CL) imaging using a single camera. In this paper, we demonstrate four-channel SI-based imaging for simultaneous snapshot C H ∗ and C2∗ CL imaging and two-color pyrometry for temperature profiles in a butane diffusion flame. We demonstrate our approach using individual species and multiple species imaging. Taking the advantage of the axisymmetric nature of the flame, the Abel transform is performed on the line-of-sight averaged images to obtain deconvoluted images. The deconvoluted maps of temperature are compared with the temperature data obtained by using a physical thermocouple probe.

2.
Sensors (Basel) ; 20(19)2020 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-32992557

RESUMO

In this article, the application of the FRAME (Frequency Recognition Algorithm for Multiple Exposures) technique is presented for multi-species measurements in symmetric and asymmetric ethylene/air diffusion flames. Laminar Bunsen-type and swirled diffusion flames are investigated to gain a better understanding of sooting combustion. For this purpose, simultaneous imaging is conducted in terms of Laser-Induced Fluorescence (LIF) of Polycyclic Aromatic Hydrocarbons (PAH) and Laser-Induced Incandescence (LII) of soot particles. Subsequently, the approach is utilized for simultaneous imaging of hydroxyl (OH)-LIF and soot-LII. Here, the modulated LIF- and LII-signals are acquired together as a single sub-image-with a single exposure utilizing the full sensor size of a single camera. By employing the frequency-recognition algorithm on the single image, the LIF- and LII-signals are spectrally isolated-generating two individual LIF- and LII-images. The flame luminosity and out-of-focus light such as reflected surrounding laser light are detected as non-modulated signals in the unprocessed image. These unwanted signals are suppressed using the image post-processing, and, therefore, the image contrast of the two resulting images is improved. It is found that PAHs mainly exist in the inner region near the burner and are surrounded by soot. The majority of the OH is distributed on the outer edges of the flame-representing the reaction zone and soot-oxidation region of the flame.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA