Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
iScience ; 26(12): 108387, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38047068

RESUMO

Infection with West Nile virus (WNV) drives a wide range of responses, from asymptomatic to flu-like symptoms/fever or severe cases of encephalitis and death. To identify cellular and molecular signatures distinguishing WNV severity, we employed systems profiling of peripheral blood from asymptomatic and severely ill individuals infected with WNV. We interrogated immune responses longitudinally from acute infection through convalescence employing single-cell protein and transcriptional profiling complemented with matched serum proteomics and metabolomics as well as multi-omics analysis. At the acute time point, we detected both elevation of pro-inflammatory markers in innate immune cell types and reduction of regulatory T cell activity in participants with severe infection, whereas asymptomatic donors had higher expression of genes associated with anti-inflammatory CD16+ monocytes. Therefore, we demonstrated the potential of systems immunology using multiple cell-type and cell-state-specific analyses to identify correlates of infection severity and host cellular activity contributing to an effective anti-viral response.

2.
Hepatology ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37870291

RESUMO

BACKGROUND AND AIMS: NAFLD is the most common form of liver disease worldwide, but only a subset of individuals with NAFLD may progress to NASH. While NASH is an important etiology of HCC, the underlying mechanisms responsible for the conversion of NAFLD to NASH and then to HCC are poorly understood. We aimed to identify genetic risk genes that drive NASH and NASH-related HCC. APPROACH AND RESULTS: We searched genetic alleles among the 24 most significant alleles associated with body fat distribution from a genome-wide association study of 344,369 individuals and validated the top allele in 3 independent cohorts of American and European patients (N=1380) with NAFLD/NASH/HCC. We identified an rs3747579-TT variant significantly associated with NASH-related HCC and demonstrated that rs3747579 is expression quantitative trait loci of a mitochondrial DnaJ Heat Shock Protein Family (Hsp40) Member A3 ( DNAJA3 ). We also found that rs3747579-TT and a previously identified PNPLA3 as a functional variant of NAFLD to have significant additional interactions with NASH/HCC risk. Patients with HCC with rs3747579-TT had a reduced expression of DNAJA3 and had an unfavorable prognosis. Furthermore, mice with hepatocyte-specific Dnaja3 depletion developed NASH-dependent HCC either spontaneously under a normal diet or enhanced by diethylnitrosamine. Dnaja3 -deficient mice developed NASH/HCC characterized by significant mitochondrial dysfunction, which was accompanied by excessive lipid accumulation and inflammatory responses. The molecular features of NASH/HCC in the Dnaja3 -deficient mice were closely associated with human NASH/HCC. CONCLUSIONS: We uncovered a genetic basis of DNAJA3 as a key player of NASH-related HCC.

3.
Cell Host Microbe ; 31(6): 978-992.e5, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37269834

RESUMO

The ability of Mycobacterium tuberculosis (Mtb) to establish latency affects disease and response to treatment. The host factors that influence the establishment of latency remain elusive. We engineered a multi-fluorescent Mtb strain that reports survival, active replication, and stressed non-replication states and determined the host transcriptome of the infected macrophages in these states. Additionally, we conducted a genome-wide CRISPR screen to identify host factors that modulated the phenotypic state of Mtb. We validated hits in a phenotype-specific manner and prioritized membrane magnesium transporter 1 (MMGT1) for a detailed mechanistic investigation. Mtb infection of MMGT1-deficient macrophages promoted a switch to persistence, upregulated lipid metabolism genes, and accumulated lipid droplets during infection. Targeting triacylglycerol synthesis reduced both droplet formation and Mtb persistence. The orphan G protein-coupled receptor GPR156 is a key inducer of droplet accumulation in ΔMMGT1 cells. Our work uncovers the role of MMGT1-GPR156-lipid droplets in the induction of Mtb persistence.


Assuntos
Mycobacterium tuberculosis , Mycobacterium tuberculosis/genética , Gotículas Lipídicas/metabolismo , Macrófagos/microbiologia , Metabolismo dos Lipídeos
4.
Circ Res ; 131(10): 828-841, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36252121

RESUMO

BACKGROUND: Dysregulated BMP (bone morphogenetic protein) or TGF-ß (transforming growth factor beta) signaling pathways are imperative in idiopathic and familial pulmonary arterial hypertension (PAH) as well as experimental pulmonary hypertension (PH) in rodent models. MED1 (mediator complex subunit 1) is a key transcriptional co-activator and KLF4 (Krüppel-like factor 4) is a master transcription factor in endothelium. However, MED1 and KLF4 epigenetic and transcriptional regulations of the BMP/TGF-ß axes in pulmonary endothelium and their dysregulations leading to PAH remain elusive. We investigate the MED1/KLF4 co-regulation of the BMP/TGF-ß axes in endothelium by studying the epigenetic regulation of BMPR2 (BMP receptor type II), ETS-related gene (ERG), and TGFBR2 (TGF-ß receptor 2) and their involvement in the PH. METHODS: High-throughput screening involving data from RNA-seq, MED1 ChIP-seq, H3K27ac ChIP-seq, ATAC-seq, and high-throughput chromosome conformation capture together with in silico computations were used to explore the epigenetic and transcriptional regulation of BMPR2, ERG, and TGFBR2 by MED1 and KLF4. In vitro experiments with cultured pulmonary arterial endothelial cells (ECs) and bulk assays were used to validate results from these in silico analyses. Lung tissue from patients with idiopathic PAH, animals with experimental PH, and mice with endothelial ablation of MED1 (EC-MED1-/-) were used to study the PH-protective effect of MED1. RESULTS: Levels of MED1 were decreased in lung tissue or pulmonary arterial endothelial cells from idiopathic PAH patients and rodent PH models. Mechanistically, MED1 acted synergistically with KLF4 to transactivate BMPR2, ERG, and TGFBR2 via chromatin remodeling and enhancer-promoter interactions. EC-MED1-/- mice showed PH susceptibility. In contrast, MED1 overexpression mitigated the PH phenotype in rodents. CONCLUSIONS: A homeostatic regulation of BMPR2, ERG, and TGFBR2 in ECs by MED1 synergistic with KLF4 is essential for the normal function of the pulmonary endothelium. Dysregulation of MED1 and the resulting impairment of the BMP/TGF-ß signaling is implicated in the disease progression of PAH in humans and PH in rodent models.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Humanos , Camundongos , Animais , Hipertensão Pulmonar/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Células Endoteliais/metabolismo , Epigênese Genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Artéria Pulmonar/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Hipertensão Arterial Pulmonar/genética , Endotélio Vascular/metabolismo , Fatores de Transcrição/metabolismo , Subunidade 1 do Complexo Mediador/genética , Subunidade 1 do Complexo Mediador/metabolismo
5.
Aging Cell ; 21(9): e13682, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35996998

RESUMO

Seasonal influenza causes mild to severe respiratory infections and significant morbidity, especially in older adults. Transcriptomic analysis in populations across multiple flu seasons has provided insights into the molecular determinants of vaccine response. Still, the metabolic changes that underlie the immune response to influenza vaccination remain poorly characterized. We performed untargeted metabolomics to analyze plasma metabolites in a cohort of younger and older subjects before and after influenza vaccination to identify vaccine-induced molecular signatures. Metabolomic and transcriptomic data were combined to define networks of gene and metabolic signatures indicative of high and low antibody response in these individuals. We observed age-related differences in metabolic baselines and signatures of antibody response to influenza vaccination and the abundance of α-linolenic and linoleic acids, sterol esters, fatty-acylcarnitines, and triacylglycerol metabolism. We identified a metabolomic signature associated with age-dependent vaccine response, finding increased tryptophan and decreased polyunsaturated fatty acids (PUFAs) in young high responders (HRs), while fatty acid synthesis and cholesteryl esters accumulated in older HRs. Integrated metabolomic and transcriptomic analysis shows that depletion of PUFAs, which are building blocks for prostaglandins and other lipid immunomodulators, in young HR subjects at Day 28 is related to a robust immune response to influenza vaccination. Increased glycerophospholipid levels were associated with an inflammatory response in older HRs to flu vaccination. This multi-omics approach uncovered age-related molecular markers associated with influenza vaccine response and provides insight into vaccine-induced metabolic responses that may help guide development of more effective influenza vaccines.


Assuntos
Vacinas contra Influenza , Influenza Humana , Idoso , Anticorpos Antivirais , Humanos , Influenza Humana/genética , Influenza Humana/prevenção & controle , Metabolômica , Transcriptoma/genética , Vacinação
6.
Cell Death Dis ; 13(6): 546, 2022 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-35688824

RESUMO

This study used DNA methyltransferase 3b (DNMT3b) knockout cells and the functional loss of DNMT3b mutation in immunodeficiency-centromeric instability-facial anomalies syndrome (ICF) cells to understand how DNMT3b dysfunction causes genome instability. We demonstrated that R-loops contribute to DNA damages in DNMT3b knockout and ICF cells. More prominent DNA damage signal in DNMT3b knockout cells was due to the loss of DNMT3b expression and the acquirement of p53 mutation. Genome-wide ChIP-sequencing mapped DNA damage sites at satellite repetitive DNA sequences including (peri-)centromere regions. However, the steady-state levels of (peri-)centromeric R-loops were reduced in DNMT3b knockout and ICF cells. Our analysis indicates that XPG and XPF endonucleases-mediated cleavages remove (peri-)centromeric R-loops to generate DNA beaks, causing chromosome instability. DNMT3b dysfunctions clearly increase R-loops susceptibility to the cleavage process. Finally, we showed that DNA double-strand breaks (DSBs) in centromere are probably repaired by error-prone end-joining pathway in ICF cells. Thus, DNMT3 dysfunctions undermine the integrity of centromere by R-loop-mediated DNA damages and repair.


Assuntos
Síndromes de Imunodeficiência , Estruturas R-Loop , Animais , Centrômero/genética , Centrômero/metabolismo , DNA/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Dano ao DNA/genética , Metilação de DNA , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/metabolismo , Mutação , DNA Metiltransferase 3B
7.
JCI Insight ; 6(22)2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34806652

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with limited treatment options. Despite endothelial cells (ECs) comprising 30% of the lung cellular composition, the role of EC dysfunction in pulmonary fibrosis (PF) remains unclear. We hypothesize that sterol regulatory element-binding protein 2 (SREBP2) plays a critical role in the pathogenesis of PF via EC phenotypic modifications. Transcriptome data demonstrate that SREBP2 overexpression in ECs led to the induction of the TGF, Wnt, and cytoskeleton remodeling gene ontology pathways and the increased expression of mesenchymal genes, such as snail family transcriptional repressor 1 (snai1), α-smooth muscle actin, vimentin, and neural cadherin. Furthermore, SREBP2 directly bound to the promoter regions and transactivated these mesenchymal genes. This transcriptomic change was associated with an epigenetic and phenotypic switch in ECs, leading to increased proliferation, stress fiber formation, and ECM deposition. Mice with endothelial-specific transgenic overexpression of SREBP2 (EC-SREBP2[N]-Tg mice) that were administered bleomycin to induce PF demonstrated exacerbated vascular remodeling and increased mesenchymal transition in the lung. SREBP2 was also found to be markedly increased in lung specimens from patients with IPF. These results suggest that SREBP2, induced by lung injury, can exacerbate PF in rodent models and in human patients with IPF.


Assuntos
Células Endoteliais/metabolismo , Fibrose Pulmonar/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Animais , Humanos , Camundongos
8.
Science ; 371(6524)2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33384352

RESUMO

Tissue homeostasis is perturbed in a diversity of inflammatory pathologies. These changes can elicit endoplasmic reticulum (ER) stress, protein misfolding, and cell death. ER stress triggers the unfolded protein response (UPR), which can promote recovery of ER proteostasis and cell survival or trigger programmed cell death. Here, we leveraged single-cell RNA sequencing to define dynamic transcriptional states associated with the adaptive versus terminal UPR in the mouse intestinal epithelium. We integrated these transcriptional programs with genome-scale CRISPR screening to dissect the UPR pathway functionally. We identified QRICH1 as a key effector of the PERK-eIF2α axis of the UPR. QRICH1 controlled a transcriptional program associated with translation and secretory networks that were specifically up-regulated in inflammatory pathologies. Thus, QRICH1 dictates cell fate in response to pathological ER stress.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Estresse do Retículo Endoplasmático/genética , Regulação da Expressão Gênica , Inflamação/metabolismo , Proteostase/genética , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas/genética , Animais , Apoptose , Células Cultivadas , Proteínas de Ligação a DNA/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Humanos , Inflamação/genética , Inflamação/patologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Camundongos , Organoides , RNA-Seq , Análise de Célula Única , Fatores de Transcrição/genética , Transcrição Gênica , eIF-2 Quinase/metabolismo
9.
J Microbiol Immunol Infect ; 54(4): 596-605, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32067946

RESUMO

BACKGROUND/PURPOSE: Intentional transmission of HIV-1 is a crime. Identifying the source of transmission between HIV-1 infected cases using phylogenetic analysis has limitations, including delayed examinations after the initiation of infection and ambiguity of phyletic relationships. This study was the first to introduce phylogenetic tree Results as forensic evidence in a trial in Taiwan. METHODS: Three lawsuit cases from different district courts in Taiwan were chosen for this study. We identified the source of transmission between individuals in each lawsuit based on the maximum likelihood and Bayesian phylogenetic tree analyses using the HIV-1 sequences from molecular cloning and ultra-deep pyrosequencing (UDPS). Two gene regions of the HIV genome, env and gag, were involved. RESULTS: The results of phylogenetic analysis using sequences from molecular cloning were clear and evidential enough in lawsuits 1 and 3. Due to the delayed sampling time, the result of sequences from molecular cloning in lawsuit 2 was ambiguous. Combined with the analyzed result of sequences from UDPS and epidemiological information, the source of transmission in lawsuit 2 was further identified. CONCLUSION: Hence phylogenetic analyses cannot exclude the possibility of unsampled intermediaries, the data interpretation should be more careful and conservative, and it should not be considered as the only evidence for the source identification in a trial without epidemiological or serological information. The evaluation of the introduced UDPS method in the identification of transmission source has shown that the validity and evidential effects were still limited and need further optimization.


Assuntos
Infecções por HIV/transmissão , Infecções por HIV/virologia , HIV-1/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Jurisprudência , Filogenia , Teorema de Bayes , HIV-1/classificação , HIV-1/isolamento & purificação , Humanos , Intenção , RNA Viral/genética , Taiwan
10.
Ann Neurol ; 89(3): 459-473, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33314303

RESUMO

OBJECTIVE: The purpose of this study was to investigate the significance of circulating micro RNAs (miRNAs) in the pathogenesis of reversible cerebral vasoconstriction syndrome (RCVS). METHODS: We prospectively recruited 3 independent cohorts of patients with RCVS and age-matched and sex-matched controls in a single medical center. Next-generation small RNA sequencing followed by quantitative polymerase chain reaction (PCR) was used to identify and validate differentially expressed miRNAs, which was cross-validated in migraine patients in ictal stage or interictal stage. Computational analysis was used to predict the target genes of miRNAs, followed by in vitro functional analysis. RESULTS: We identified a panel of miRNAs including miR-130a-3p, miR-130b-3p, let-7a-5p, let-7b-5p, and let-7f-5p that well differentiated patients with RCVS from controls (area under the receiver operating characteristics curve [AUC] was 0.906, 0.890, and 0.867 in the 3 cohorts, respectively). The abundance of let-7a-5p, let-7b-5p, and let-7f-5p, but not miR-130a-3p nor miR-130b-3p, was significantly higher in patients with ictal migraine compared with that of controls and patients with interictal migraine. Target prediction and pathway enrichment analysis suggested that the transforming growth factor-ß signaling pathway and endothelin-1 responsible for vasomotor control might link these miRNAs to RCVS pathogenesis, which was confirmed in vitro by transfecting miRNAs mimics or incubating the patients' cerebrospinal fluid (CSF) in 3 different vascular endothelial cells. Moreover, miR-130a-3p was associated with imaging-proven disruption of the blood-brain barrier (BBB) in patients with RCVS and its overexpression led to reduced transendothelial electrical resistance (ie, increased permeability) in in vitro human BBB model. INTERPRETATION: We identified the circulating miRNA signatures associated with RCVS, which may be functionally linked to its headache, BBB integrity, and vasomotor function. ANN NEUROL 2021;89:459-473.


Assuntos
Barreira Hematoencefálica/fisiopatologia , Transtornos Cerebrovasculares/genética , MicroRNA Circulante/sangue , Células Endoteliais , MicroRNAs/sangue , Vasoconstrição/genética , Adulto , Permeabilidade Capilar , Estudos de Casos e Controles , Transtornos Cerebrovasculares/sangue , Transtornos Cerebrovasculares/fisiopatologia , MicroRNA Circulante/genética , Simulação por Computador , Impedância Elétrica , Endotelina-1/genética , Endotelina-1/metabolismo , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Células Endoteliais da Veia Umbilical Humana , Humanos , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade , Transtornos de Enxaqueca/sangue , Transtornos de Enxaqueca/genética , Transtornos de Enxaqueca/fisiopatologia , Reprodutibilidade dos Testes , Análise de Sequência de RNA , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Sistema Vasomotor/fisiopatologia
11.
BMC Bioinformatics ; 21(Suppl 13): 389, 2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32938376

RESUMO

BACKGROUND: MicroRNAs (miRNAs) play a key role in mediating the action of insulin on cell growth and the development of diabetes. However, few studies have been conducted to provide a comprehensive overview of the miRNA-mediated signaling network in response to glucose in pancreatic beta cells. In our study, we established a computational framework integrating multi-omics profiles analyses, including RNA sequencing (RNA-seq) and small RNA sequencing (sRNA-seq) data analysis, inverse expression pattern analysis, public data integration, and miRNA targets prediction to illustrate the miRNA-mediated regulatory network at different glucose concentrations in INS-1 pancreatic beta cells (INS-1), which display important characteristics of the pancreatic beta cells. RESULTS: We applied our computational framework to the expression profiles of miRNA/mRNA of INS-1, at different glucose concentrations. A total of 1437 differentially expressed genes (DEGs) and 153 differentially expressed miRNAs (DEmiRs) were identified from multi-omics profiles. In particular, 121 DEmiRs putatively regulated a total of 237 DEGs involved in glucose metabolism, fatty acid oxidation, ion channels, exocytosis, homeostasis, and insulin gene regulation. Moreover, Argonaute 2 immunoprecipitation sequencing, qRT-PCR, and luciferase assay identified Crem, Fn1, and Stc1 are direct targets of miR-146b and elucidated that miR-146b acted as a potential regulator and promising target to understand the insulin signaling network. CONCLUSIONS: In this study, the integration of experimentally verified data with system biology framework extracts the miRNA network for exploring potential insulin-associated miRNA and their target genes. The findings offer a potentially significant effect on the understanding of miRNA-mediated insulin signaling network in the development and progression of pancreatic diabetes.


Assuntos
Regulação da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Insulina/metabolismo , MicroRNAs/genética , Humanos , Transdução de Sinais
12.
Chem Commun (Camb) ; 56(76): 11307-11310, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32840276

RESUMO

This study monitors the dynamic progress of a newly developed background-free, target responsive strategy; 2,3-dihydroquinolin-4-imine (DQI) that can instantly respond to environmental changes with fluorescence enhancement, revealing a comprehensive platform for in vivo fluorescence bioimaging of mebrane-bound carbonic anhydrase II in HeLa cells and its expression during the growth of larval zebrafish.


Assuntos
Anidrase Carbônica II/biossíntese , Corantes Fluorescentes/análise , Corantes Fluorescentes/química , Quinolinas/química , Peixe-Zebra/crescimento & desenvolvimento , Animais , Anidrase Carbônica II/antagonistas & inibidores , Anidrase Carbônica II/metabolismo , Inibidores da Anidrase Carbônica/farmacologia , Teoria da Densidade Funcional , Corantes Fluorescentes/síntese química , Células HeLa , Humanos , Larva/enzimologia , Larva/crescimento & desenvolvimento , Estrutura Molecular , Imagem Óptica , Quinolinas/síntese química , Sulfonamidas/farmacologia
13.
EMBO Mol Med ; 12(5): e11303, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32324970

RESUMO

Endothelial dysfunction is critically involved in the pathogenesis of pulmonary arterial hypertension (PAH) and that exogenously administered microRNA may be of therapeutic benefit. Lower levels of miR-483 were found in serum from patients with idiopathic pulmonary arterial hypertension (IPAH), particularly those with more severe disease. RNA-seq and bioinformatics analyses showed that miR-483 targets several PAH-related genes, including transforming growth factor-ß (TGF-ß), TGF-ß receptor 2 (TGFBR2), ß-catenin, connective tissue growth factor (CTGF), interleukin-1ß (IL-1ß), and endothelin-1 (ET-1). Overexpression of miR-483 in ECs inhibited inflammatory and fibrogenic responses, revealed by the decreased expression of TGF-ß, TGFBR2, ß-catenin, CTGF, IL-1ß, and ET-1. In contrast, inhibition of miR-483 increased these genes in ECs. Rats with EC-specific miR-483 overexpression exhibited ameliorated pulmonary hypertension (PH) and reduced right ventricular hypertrophy on challenge with monocrotaline (MCT) or Sugen + hypoxia. A reversal effect was observed in rats that received MCT with inhaled lentivirus overexpressing miR-483. These results indicate that PAH is associated with a reduced level of miR-483 and that miR-483 might reduce experimental PH by inhibition of multiple adverse responses.


Assuntos
Hipertensão Pulmonar , MicroRNAs , Animais , Modelos Animais de Doenças , Humanos , Hipertensão Pulmonar/genética , Hipóxia , MicroRNAs/genética , Monocrotalina , Ratos
14.
Sci Adv ; 6(6): eaay0264, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32076643

RESUMO

During endoderm formation, cell identity and tissue morphogenesis are tightly controlled by cell-intrinsic and cell-extrinsic factors such as biochemical and physical inputs. While the effects of biochemical factors are well studied, the physical cues that regulate cell division and differentiation are poorly understood. RNA sequencing analysis demonstrated increases of endoderm-specific gene expression in hPSCs cultured on soft substrate (Young's modulus, 3 ± 0.45 kPa) in comparison with hard substrate (Young's modulus, 165 ± 6.39 kPa). Further analyses revealed that multiple long noncoding RNAs (lncRNAs) were up-regulated on soft substrate; among them, LINC00458 was identified as a stiffness-dependent lncRNA specifically required for hPSC differentiation toward an early endodermal lineage. Gain- and loss-of-function experiments confirmed that LINC00458 is functionally required for hPSC endodermal lineage specification induced by soft substrates. Our study provides evidence that mechanical cues regulate the expression of LINC00458 and induce differentiation of hPSC into hepatic lineage progenitors.


Assuntos
Endoderma/citologia , Endoderma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , RNA Longo não Codificante/genética , Proteína Smad2/genética , Proteína Smad3/genética , Animais , Diferenciação Celular/genética , Linhagem Celular , Linhagem da Célula/genética , Células Cultivadas , Matriz Extracelular , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Modelos Biológicos , Especificidade de Órgãos/genética , Interferência de RNA , Transcriptoma
15.
Nucleic Acids Res ; 48(D1): D148-D154, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31647101

RESUMO

MicroRNAs (miRNAs) are small non-coding RNAs (typically consisting of 18-25 nucleotides) that negatively control expression of target genes at the post-transcriptional level. Owing to the biological significance of miRNAs, miRTarBase was developed to provide comprehensive information on experimentally validated miRNA-target interactions (MTIs). To date, the database has accumulated >13,404 validated MTIs from 11,021 articles from manual curations. In this update, a text-mining system was incorporated to enhance the recognition of MTI-related articles by adopting a scoring system. In addition, a variety of biological databases were integrated to provide information on the regulatory network of miRNAs and its expression in blood. Not only targets of miRNAs but also regulators of miRNAs are provided to users for investigating the up- and downstream regulations of miRNAs. Moreover, the number of MTIs with high-throughput experimental evidence increased remarkably (validated by CLIP-seq technology). In conclusion, these improvements promote the miRTarBase as one of the most comprehensively annotated and experimentally validated miRNA-target interaction databases. The updated version of miRTarBase is now available at http://miRTarBase.cuhk.edu.cn/.


Assuntos
Bases de Dados de Ácidos Nucleicos , MicroRNAs/metabolismo , MicroRNA Circulante/metabolismo , Mineração de Dados , Regulação da Expressão Gênica , RNA Mensageiro/metabolismo , Interface Usuário-Computador
16.
Stem Cell Res Ther ; 10(1): 275, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31462299

RESUMO

BACKGROUND: Hypertrophic scars (HSs) are formed via an aberrant response to the wound healing process. HSs can be cosmetic or can result in functional problems. Prolonged proliferation and remodeling phases disrupt wound healing, leading to excessive collagen production and HS formation. However, there are currently no satisfactory drugs to prevent HS formation. Mesenchymal stem cell (MSC) conditioned medium (CM) has therapeutic effects on wound healing and preventing HS formation. Bone marrow concentrate (BMC) contains various growth factors and cytokines that are crucial for regeneration and has been applied in the clinical setting. In this study, we evaluated the effects of BMC-induced MSC CM on HS formation in a rabbit ear model. METHODS: We established a rabbit ear wound model by generating full-thickness wounds in the ears of rabbits (n = 12) and treated wounds with MSC CM, BMC CM, or BMC-induced MSC CM. Dermal fibroblasts from human hypertrophic scar were stimulated with transforming growth factor beta 1 (TGF-ß1) for 24 h and cultured in each culture medium for 72 h. We measured the hypertrophic scar (HS) formation during the skin regeneration by measuring the expression of several remodeling molecules and the effect of these conditioned media on active human HS fibroblasts. RESULTS: Our results showed that BMC-induced MSC CM had greater antifibrotic effects than MSC CM and BMC CM significantly attenuated HS formation in rabbits. BMC-induced MSC CM accelerated wound re-epithelization by increasing cell proliferation. Additionally, BMC-induced MSC CM also inhibited fibrosis by decreasing profibrotic gene and protein expression, promoting extracellular matrix turnover, inhibiting fibroblast contraction, and reversing myofibroblast activation. CONCLUSIONS: BMC-induced MSC CM modulated the proliferation and remodeling phases of wound healing, representing a potential wound healing agent and approach for preventing HS formation.


Assuntos
Medula Óssea/metabolismo , Cicatriz Hipertrófica/metabolismo , Meios de Cultivo Condicionados/metabolismo , Orelha/patologia , Células-Tronco Mesenquimais/metabolismo , Cicatrização/fisiologia , Animais , Medula Óssea/fisiologia , Proliferação de Células/fisiologia , Cicatriz Hipertrófica/patologia , Matriz Extracelular/metabolismo , Matriz Extracelular/fisiologia , Feminino , Fibroblastos/metabolismo , Fibroblastos/fisiologia , Células-Tronco Mesenquimais/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Miofibroblastos/metabolismo , Miofibroblastos/fisiologia , Coelhos , Pele/metabolismo , Pele/patologia , Fator de Crescimento Transformador beta1/metabolismo
17.
Sci Rep ; 9(1): 10923, 2019 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-31358825

RESUMO

The dysbiosis of human gut microbiota is strongly associated with the development of colorectal cancer (CRC). The dysbiotic features of the transition from advanced polyp to early-stage CRC are largely unknown. We performed a 16S rRNA gene sequencing and enterotype-based gut microbiota analysis study. In addition to Bacteroides- and Prevotella-dominated enterotypes, we identified an Escherichia-dominated enterotype. We found that the dysbiotic features of CRC were dissimilar in overall samples and especially Escherichia-dominated enterotype. Besides a higher abundance of Fusobacterium, Enterococcus, and Aeromonas in all CRC faecal microbiota, we found that the most notable characteristic of CRC faecal microbiota was a decreased abundance of potential beneficial butyrate-producing bacteria. Notably, Oscillospira was depleted in the transition from advanced adenoma to stage 0 CRC, whereas Haemophilus was depleted in the transition from stage 0 to early-stage CRC. We further identified 7 different CAGs by analysing bacterial clusters. The abundance of microbiota in cluster 3 significantly increased in the CRC group, whereas that of cluster 5 decreased. The abundance of both cluster 5 and cluster 7 decreased in the Escherichia-dominated enterotype of the CRC group. We present the first enterotype-based faecal microbiota analysis. The gut microbiota of colorectal neoplasms can be influenced by its enterotype.


Assuntos
Adenoma/microbiologia , Neoplasias Colorretais/microbiologia , Microbioma Gastrointestinal , Adenoma/patologia , Aeromonas/genética , Aeromonas/patogenicidade , Idoso , Bacteroidaceae/genética , Bacteroidaceae/patogenicidade , Neoplasias Colorretais/patologia , Enterococcus/genética , Enterococcus/patogenicidade , Escherichia/genética , Escherichia/patogenicidade , Feminino , Fusobacterium/genética , Fusobacterium/patogenicidade , Haemophilus/genética , Haemophilus/patogenicidade , Humanos , Masculino , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética
18.
Nat Commun ; 10(1): 1524, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30944305

RESUMO

Tissues and cells in organism are continuously exposed to complex mechanical cues from the environment. Mechanical stimulations affect cell proliferation, differentiation, and migration, as well as determining tissue homeostasis and repair. By using a specially designed skin-stretching device, we discover that hair stem cells proliferate in response to stretch and hair regeneration occurs only when applying proper strain for an appropriate duration. A counterbalance between WNT and BMP-2 and the subsequent two-step mechanism are identified through molecular and genetic analyses. Macrophages are first recruited by chemokines produced by stretch and polarized to M2 phenotype. Growth factors such as HGF and IGF-1, released by M2 macrophages, then activate stem cells and facilitate hair regeneration. A hierarchical control system is revealed, from mechanical and chemical signals to cell behaviors and tissue responses, elucidating avenues of regenerative medicine and disease control by demonstrating the potential to manipulate cellular processes through simple mechanical stimulation.


Assuntos
Cabelo/fisiologia , Macrófagos/fisiologia , Regeneração/fisiologia , Animais , Proteína Morfogenética Óssea 2 , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Proliferação de Células , Quimiocinas/genética , Quimiocinas/metabolismo , Feminino , Cabelo/crescimento & desenvolvimento , Cabelo/metabolismo , Folículo Piloso/crescimento & desenvolvimento , Folículo Piloso/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Proteínas Recombinantes , Pele/citologia , Pele/metabolismo , Células-Tronco , Estresse Mecânico , Fator de Crescimento Transformador beta
19.
Front Oncol ; 9: 1508, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32039004

RESUMO

Introduction: In the United States and Europe, endometrial endometrioid carcinoma (EEC) is the most prevalent gynecologic malignancy. Lymph node metastasis (LNM) is the key determinant of the prognosis and treatment of EEC. A biomarker that predicts LNM in patients with EEC would be beneficial, enabling individualized treatment. Current preoperative assessment of LNM in EEC is not sufficiently accurate to predict LNM and prevent overtreatment. This pilot study established a biomarker signature for the prediction of LNM in early stage EEC. Methods: We performed RNA sequencing in 24 clinically early stage (T1) EEC tumors (lymph nodes positive and negative in 6 and 18, respectively) from Cathay General Hospital and analyzed the RNA sequencing data of 289 patients with EEC from The Cancer Genome Atlas (lymph node positive and negative in 33 and 256, respectively). We analyzed clinical data including tumor grade, depth of tumor invasion, and age to construct a sequencing-based prediction model using machine learning. For validation, we used another independent cohort of early stage EEC samples (n = 72) and performed quantitative real-time polymerase chain reaction (qRT-PCR). Finally, a PCR-based prediction model and risk score formula were established. Results: Eight genes (ASRGL1, ESR1, EYA2, MSX1, RHEX, SCGB2A1, SOX17, and STX18) plus one clinical parameter (depth of myometrial invasion) were identified for use in a sequencing-based prediction model. After qRT-PCR validation, five genes (ASRGL1, RHEX, SCGB2A1, SOX17, and STX18) were identified as predictive biomarkers. Receiver operating characteristic curve analysis revealed that these five genes can predict LNM. Combined use of these five genes resulted in higher diagnostic accuracy than use of any single gene, with an area under the curve of 0.898, sensitivity of 88.9%, and specificity of 84.1%. The accuracy, negative, and positive predictive values were 84.7, 98.1, and 44.4%, respectively. Conclusion: We developed a five-gene biomarker panel associated with LNM in early stage EEC. These five genes may represent novel targets for further mechanistic study. Our results, after corroboration by a prospective study, may have useful clinical implications and prevent unnecessary elective lymph node dissection while not adversely affecting the outcome of treatment for early stage EEC.

20.
Sci Rep ; 8(1): 12284, 2018 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-30115977

RESUMO

Glycine N-methyltransferase (GNMT) is a tumor suppressor for HCC. It is down-regulated in HCC, but the mechanism is not fully understood. MicroRNA-224 (miR-224) acts as an onco-miR in HCC. This study is the first to investigate miR-224 targeting the coding region of GNMT transcript. The GNMT-MT plasmid containing a miR-224 binding site silent mutation of the GNMT coding sequence can escape the suppression of miR-224 in HEK293T cells. Expression of both exogenous and endogenous GNMT was suppressed by miR-224, while miR-224 inhibitor enhanced GNMT expression. miR-224 counteracts the effects of GNMT on the reduction of cell proliferation and tumor growth. The levels of miR-224 and GNMT mRNA showed a significant inverse relationship in tumor specimens from HCC patients. Utilizing CCl4-treated hepatoma cells and mice as a cell damage of inflammatory or liver injury model, we observed that the decreased expression levels of GNMT were accompanied with the elevated expression levels of miR-224 in hepatoma cells and mouse liver. Finally, hepatic AAV-mediated GNMT also reduced CCl4-induced miR-224 expression and liver fibrosis. These results indicated that AAV-mediated GNMT has potential liver protection activity. miR-224 can target the GNMT mRNA coding sequence and plays an important role in GNMT suppression during liver tumorigenesis.


Assuntos
Aciltransferases/genética , Carcinoma Hepatocelular/enzimologia , Regulação para Baixo/fisiologia , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/enzimologia , MicroRNAs/fisiologia , Regiões 3' não Traduzidas , Animais , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Células HEK293 , Humanos , Neoplasias Hepáticas/genética , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA