Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Arthropod Borne Dis ; 17(1): 94-104, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37609561

RESUMO

Background: A combined morphological and molecular survey was performed to determine the agent of human linear dermatitis Paederus Fabricius, 1775 (Coleoptera: Staphylinidae, Paederinae) species composition in Mazandaran Province in the Caspian Sea coast in northern Iran, where most of linear dermatitis cases of the country occurred. Methods: Altogether, 397 Paederus specimens were collected from May to August 2021 and classified using morphological characters and ITS2-rDNA sequence analysis. Results: Morphological investigation revealed that all the specimens were Paederus fuscipes. ITS2 polymerase chain reaction (PCR) direct-sequences and the profiles of restriction fragment length polymorphism (RFLP) derived from digestion of PCR products by HinfI, HpaII, and SalI enzymes were identical confirming the morphological results, implying that all specimens belonged to a single taxon. Conclusion: Paederus fuscipes (Fabricius, 1775) is considered the dominant taxon and responsible for linear dermatitis in Mazandaran Province. To our knowledge, we have provided the first molecular typing of Paederus beetles at the species level, suggesting that ITS2-rDNA characterization is an alternative tool for species discrimination of Paederus spp.

2.
PLoS One ; 18(4): e0284704, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37079598

RESUMO

Cockroaches are significant pests worldwide, being important in medical, veterinary, and public health fields. Control of cockroaches is difficult because they have robust reproductive ability and high adaptability and are resistant to many insecticides. Wolbachia is an endosymbiont bacterium that infects the reproductive organs of approximately 70% of insect species and has become a promising biological agent for controlling insect pests. However, limited data on the presence or strain typing of Wolbachia in cockroaches are available. PCR amplification and sequencing of the wsp and gltA genes were used to study the presence, prevalence and molecular typing of Wolbachia in two main cockroach species, Blattella germanica (German cockroach) and Periplaneta americana (American cockroach), from different geographical locations of Iran. The Wolbachia endosymbiont was found only in 20.6% of German cockroaches while it was absent in American cockroach samples. Blast search and phylogenetic analysis revealed that the Wolbachia strain found in the German cockroach belongs to Wolbachia supergroup F. Further studies should investigate the symbiotic role of Wolbachia in cockroaches and determine whether lack of Wolbachia infection may increase this insect's ability to tolerate or acquire various pathogens. Results of our study provide a foundation for continued work on interactions between cockroaches, bacterial endosymbionts, and pathogens.


Assuntos
Blattellidae , Baratas , Periplaneta , Wolbachia , Animais , Periplaneta/microbiologia , Blattellidae/genética , Blattellidae/microbiologia , Wolbachia/genética , Filogenia , Baratas/microbiologia , Alérgenos
3.
PLoS Negl Trop Dis ; 16(7): e0010609, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35853080

RESUMO

The development of Leishmania parasites within sand fly vectors occurs entirely in the insect gut lumen, in the presence of symbiotic and commensal bacteria. The impacts of host species and environment on the gut microbiome are currently poorly understood. We employed MiSeq sequencing of the V3-16S rRNA gene amplicons to characterize and compare the gut microbiota of field-collected populations of Phlebotomus kandelakii, P. perfiliewi, P. alexandri, and P. major, the primary or secondary vectors of zoonotic visceral leishmaniasis (ZVL) in three distinct regions of Iran where ZVL is endemic. In total, 160,550 quality-filtered reads of the V3 region yielded a total of 72 operational taxonomic units (OTUs), belonging to 23 phyla, 47 classes, 91 orders, 131 families, and 335 genera. More than 50% of the bacteria identified were Proteobacteria, followed by Firmicutes (22%), Deinococcus-Thermus (9%), Actinobacteria (6%), and Bacteroidetes (5%). The core microbiome was dominated by eight genera: Acinetobacter, Streptococcus, Enterococcus, Staphylococcus, Bacillus, Propionibacterium, Kocuria, and Corynebacterium. Wolbachia were found in P. alexandri and P. perfiliewi, while Asaia sp. was reported in P. perfiliewi. Substantial variations in the gut bacterial composition were found between geographically distinct populations of the same sand fly species, as well as between different species at the same location, suggesting that sand fly gut microbiota is shaped by both the host species and geographical location. Phlebotomus kandelakii and P. perfiliewi in the northwest, and P. alexandri in the south, the major ZVL vectors, harbor the highest bacterial diversity, suggesting a possible relationship between microbiome diversity and the capacity for parasite transmission. In addition, large numbers of gram-positive human or animal pathogens were found, suggesting that sand fly vectors of ZVL could pose a potential additional threat to livestock and humans in the region studied. The presence of Bacillus subtilis, Enterobacter cloacae, and Asaia sp suggests that these bacteria could be promising candidates for a paratransgenesis approach to the fight against Leishmaniasis.


Assuntos
Microbioma Gastrointestinal , Leishmaniose Visceral , Phlebotomus , Psychodidae , Animais , Bactérias/genética , Humanos , Irã (Geográfico)/epidemiologia , Leishmaniose Visceral/epidemiologia , Phlebotomus/parasitologia , Psychodidae/parasitologia , RNA Ribossômico 16S/genética
4.
Parasit Vectors ; 14(1): 469, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521455

RESUMO

BACKGROUND: Anaplasmosis and ehrlichiosis are tick-borne diseases affecting humans and livestock, particularly in tropical and subtropical regions. Animal husbandry is the main activity of people on the borders of Iran and Pakistan, with thousands of cattle crossing the border each week. METHODS: PCR and sequencing of the 16S rRNA gene was used to determine the percentage and geographical distribution of the pathogens carried by Hyalomma spp. (n = 306) collected from 126 goats, cattle and camels in the region between November 2017 and late March 2018. RESULTS: In total, 1124 hard ticks including 1020 Hyalomma spp. ticks belonging to six species (Hyalomma anatolicum, Hyalomma asiaticum, Hyalomma marginatum, Hyalomma dromedarii, Hyalomma schulzei, and Hyalomma detritum) were found on the borders of Iran and Pakistan, with H. anatolicum being the most prevalent tick species. Anaplasma spp. and/or Ehrlichia spp. DNA was found in 68.3% of the engorged tick specimens (n = 256). Sequencing of a subset (12.6%) of PCR-positive samples revealed Anaplasma ovis, Anaplasma marginale, and Ehrlichia ewingii DNA in 81.8%, 9.1%, and 9.1% of the ticks, respectively. To our knowledge, this is the first report of E. ewingii, an important human pathogen, in Iran. CONCLUSIONS: Based on molecular analysis, three pathogenic Anaplasmataceae were detected in six Hyalomma spp. parasitizing cattle, goats and camels, confirming the presence of these pathogens along the Iran-Pakistan border.


Assuntos
Anaplasmataceae/genética , Anaplasmose/epidemiologia , Ehrlichiose/veterinária , Ixodidae/microbiologia , Doenças Transmitidas por Carrapatos/veterinária , Anaplasma/genética , Anaplasmose/microbiologia , Animais , Camelus , Bovinos , Ehrlichia/genética , Ehrlichiose/epidemiologia , Ehrlichiose/microbiologia , Feminino , Cabras , Irã (Geográfico)/epidemiologia , Masculino , Paquistão/epidemiologia , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/microbiologia
5.
PLoS Negl Trop Dis ; 15(6): e0009480, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34106924

RESUMO

The microbial flora associated with Hyalomma anatolicum ticks was investigated using culture-dependent (CD) and independent (next generation sequencing, NGS) methods. The bacterial profiles of different organs, development stages, sexes, and of host cattle skins were analyzed using the CD method. The egg and female gut microbiota were investigated using NGS. Fourteen distinct bacterial strains were identified using the CD method, of which Bacillus subtilis predominated in eggs, larval guts and in adult female and male guts, suggesting probable transovarial transmission. Bacillus velezensis and B. subtilis were identified in cattle skin and tick samples, suggesting that skin is the origin of tick bacteria. H.anatolicum males harbour lower bacterial diversity and composition than females. The NGS analysis revealed five different bacterial phyla across all samples, Proteobacteria contributing to >95% of the bacteria. In all, 56611sequences were generated representing 6,023 OTUs per female gut and 421 OTUs per egg. Francisellaceae family and Francisella make up the vast majority of the OTUs. Our findings are consistent with interference between Francisella and Rickettsia. The CD method identified bacteria, such B. subtilis that are candidates for vector control intervention approaches such paratransgenesis whereas NGS revealed high Francisella spp. prevalence, indicating that integrated methods are more accurate to characterize microbial community and diversity.


Assuntos
Vetores Aracnídeos/microbiologia , Doenças dos Bovinos/transmissão , Febre Hemorrágica da Crimeia/veterinária , Ixodidae/microbiologia , Microbiota , Animais , Vetores Aracnídeos/fisiologia , Vetores Aracnídeos/virologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bovinos , Doenças dos Bovinos/virologia , Feminino , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Vírus da Febre Hemorrágica da Crimeia-Congo/efeitos da radiação , Febre Hemorrágica da Crimeia/transmissão , Febre Hemorrágica da Crimeia/virologia , Ixodidae/fisiologia , Ixodidae/virologia , Masculino , Filogenia
6.
J Arthropod Borne Dis ; 13(3): 268-283, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31879667

RESUMO

BACKGROUND: The impact of environmental factors and host on Hyalomma spp. community structure and abundance in the main Crimean-Congo haemorrhagic fever (CCHF) foci of Iran is largely unknown. METHODS: Biotic and abiotic factors, including host, temperature, humidity, altitude, Köppen-Geiger climate types, season, and precipitation on Hyalomma spp. community structure and abundances in 11 provinces of Iran were investigated. Additionally, the possible infection of ticks with CCHF virus was evaluated using reverse transcription PCR technique. RESULTS: Species analyses demonstrated the presence of Hyalomma anatolicum, H. marginatum, H. dromedarii, H. asiaticum, H. detritum and H. schulzei in the study area. Hyalomma anatolicum was the dominant species in the southern and northern parts, whereas H. dromedarii was distributed mostly in central parts of the country. The highest tick infestation was recognized in hot season. Spatial variation in tick relative density was observed between habitat types where more ticks were collected in deserts, semi-deserts, and Mediterranean habitats. Except for H. dromedarii, which was more prevalent on camel (P= 0.044), there were no significant variations in the frequencies of other Hyalomma species on different hosts. Hyalomma anatolicum, H. dromedarii frequencies had significant positive and negative association with temperature and precipitation respectively. Also humidity has positive impact on H. asiaticum frequency. CONCLUSION: Data presented here will help improve ecological models to forecast the distribution of Hyalomma spp. ticks, to evaluate the risk of CCHF and other tick-borne diseases, and to design proper vector control measures to suppress Hyalomma populations in Iran.

7.
Parasit Vectors ; 12(1): 10, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30616668

RESUMO

BACKGROUND: Leishmaniasis is caused by Leishmania parasites and is transmitted to humans through the bite of infected sand flies. Development of Leishmania to infective metacyclic promastigotes occurs within the sand fly gut where the gut microbiota influences development of the parasite. Paratransgenesis is a new control method in which symbiotic bacteria are isolated, transformed and reintroduced into the gut through their diet to express anti-parasitic molecules. In the present study, the midgut microbiota of three sand fly species from a steppe and a mountainous region of northern Iran, where zoonotic visceral leishmaniasis (ZVL) is endemic, was investigated. METHODS: Briefly, adult female sand flies was collected during summer 2015 and, after dissection, the bacterial composition of the guts were analyzed using a culture-dependent method. Bacterial DNA from purified colonies was extracted to amplify the 16S rRNA gene which was then sequenced. RESULTS: Three ZVL sand fly vectors including Phlebotomus major, P. kandelakii and P. halepensis were found in the highlighted regions. In total, 39 distinct aerobic bacterial species were found in the sand fly midguts. The sand fly microbiota was dominated by Proteobacteria (56.4%) and Firmicutes (43.6%). Bacterial richness was significantly higher in the steppe region than in the mountainous region (32 vs 7 species). Phlebotomus kandelakii, the most important ZVL vector in the study area, had the highest bacterial richness among the three species. Bacillus subtilis and Pantoea agglomerans were isolated from the guts of the sand flies; these are already used for the paratransgenesis of sand flies and mosquitoes, respectively. CONCLUSIONS: The existence of B. subtilis and P. agglomerans in the ZVL vectors and other sand fly species studied so far suggests that these two bacterial species are potential candidates for paratransgenic approach to prevent ZVL transmission. Further research needs to test the possible relationship between the gut microbiome richness and the vector competence of the ZVL vectors.


Assuntos
Bactérias Aeróbias/fisiologia , Microbioma Gastrointestinal , Insetos Vetores/microbiologia , Leishmania/fisiologia , Leishmaniose Visceral/transmissão , Phlebotomus/microbiologia , Animais , Feminino , Humanos , Insetos Vetores/parasitologia , Irã (Geográfico)/epidemiologia , Leishmaniose Visceral/epidemiologia , Leishmaniose Visceral/parasitologia , Masculino , Phlebotomus/parasitologia , RNA Ribossômico 16S/genética , Zoonoses
8.
Microb Ecol ; 78(1): 185-194, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30460544

RESUMO

Understanding how arthropod vectors acquire their bacteria is essential for implementation of paratransgenic and RNAi strategies using genetically modified bacteria to control vector-borne diseases. In this study, a genetically marked Serratia AS1 strain expressing the mCherry fluorescent protein (mCherry-Serratia) was used to test various acquisition routes in six arthropod vectors including Anopheles stephensi, Culex pipiens, Cx. quinquefaciatus, Cx. theileri, Phlebotomus papatasi, and Hyalomma dromedarii. Depending on the species, the bacteria were delivered to (i) mosquito larval breeding water, (ii) host skin, (iii) sugar bait, and (iv) males (paratransgenic). The arthropods were screened for the bacteria in their guts or other tissues. All the hematophagous arthropods were able to take the bacteria from the skin of their hosts while taking blood meal. The mosquitoes were able to take up the bacteria from the water at larval stages and to transfer them transstadially to adults and finally to transfer them to the water they laid eggs in. The mosquitoes were also able to acquire the bacteria from male sperm. The level of bacterial acquisition was influenced by blood feeding time and strategies (pool or vessel feeding), dipping in water and resting time of newly emerged adult mosquitoes, and the disseminated tissue/organ. Transstadial, vertical, and venereal bacterial acquisition would increase the sustainability of the modified bacteria in vector populations and decrease the need for supplementary release experiments whereas release of paratransgenic males that do not bite has fewer ethical issues. Furthermore, this study is required to determine if the modified bacteria can be introduced to arthropods in the same routes in nature.


Assuntos
Vetores Artrópodes/microbiologia , Culicidae/microbiologia , Ixodidae/microbiologia , Controle Biológico de Vetores/métodos , Phlebotomus/microbiologia , Interferência de RNA , Serratia/genética , Animais , Vetores Artrópodes/fisiologia , Culicidae/fisiologia , Feminino , Ixodidae/fisiologia , Larva/microbiologia , Larva/fisiologia , Masculino , Controle Biológico de Vetores/instrumentação , Phlebotomus/fisiologia , Serratia/fisiologia
9.
J Med Entomol ; 56(2): 553-559, 2019 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-30388221

RESUMO

The mosquito Culex pipiens is the primary vector of Rift Valley fever, West Nile, encephalitis, and Zika viruses, and periodic lymphatic filariasis. Developing insecticide resistance in mosquitoes demands the development of new approaches to fight these diseases. Paratransgenesis and RNAi approaches by using engineered bacteria have been shown to reduce mosquito vector competence. Serratia-AS1 is a bacterium found in mosquitoes and was genetically modified for expression of antimalaria effector molecules that repress development of malaria parasites in mosquitoes. The aim of this study was to determine how a genetically marked Serratia strain expressing the mCherry fluorescent protein (mCherry-Serratia) affects the colonization potential, life span, blood feeding behavior, fecundity, and fertility of Cx. pipiens. mCherry-Serratia bacteria disseminated into larvae, pupae, and newly emerged adults and dramatically increased in numbers following a blood meal. The bacterium was transmitted to progeny, showing that it can extend horizontally, transstadially, and vertically through the mosquito population. The presence of mCherry-Serratia did not affect blood feeding behavior, survival rate, fecundity, and fertility of Culex mosquitoes. This is the first study to evaluate the effects of an engineered bacteria on the fitness of Cx. pipiens. Although challenges remain, such as producing engineered bacteria to secrete anti-pathogens associated with Cx. pipiens, introducing such bacteria into mosquito populations, our findings of minimal fitness cost caused by Serratia-AS1 bode well for the development of paratransgenesis and RNAi approaches.


Assuntos
Culex/microbiologia , Serratia/fisiologia , Animais , Culex/fisiologia , Comportamento Alimentar , Feminino , Fertilidade , Aptidão Genética , Interações Hospedeiro-Patógeno , Interferência de RNA
10.
Pathog Glob Health ; 112(3): 152-160, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29745300

RESUMO

Sand flies of Phlebotomus papatasi and P. sergenti are the main vectors of cutaneous leishmanisis (CL) in the old world. We aimed to screen Iranian P. papatasi and P. sergenti for their natural infections with Wolbachia and to determine their phylogenetic association with other species. Wolbachia surface protein (wsp) gene was PCR amplified from DNA extracted from Phlebotomus species, sequenced, and were analysed in combination with wsp sequences related to Phelebtominae and other insects. All Wolbachia-infecting Iranian sand flies of P. papatasi and P. sergenti were classified in the Supergroup A., Wolbachia isolated from P. sergenti were clustered in a new subgroup within Supergroup A so-called wSreg. The Wolbachia strains identified from the P. papatasi clustered mainly in the subgroup wPap and partly in wSerg. Multiple Wholbachia infection within a single population of P.papatasi warrants investigation on existence and intensity of cytoplasmic incompatibility between the wPap and wSerg subgroups.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Phlebotomus/microbiologia , Sorogrupo , Wolbachia/classificação , Wolbachia/isolamento & purificação , Animais , Análise por Conglomerados , Genótipo , Irã (Geográfico) , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Wolbachia/genética
11.
Acta Med Iran ; 53(9): 523-32, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26553079

RESUMO

Insects with over 30,000 aquatic species are known as very successful arthropods in freshwater habitats. Some of them are applied as biological indicators for water quality control, as well as the main food supply for fishes and amphibians. The faunistic studies are the basic step in entomological researches; the current study was carried out emphasizing on the fauna of aquatic insects in Karaj River, northern Iran. A field study was carried out in six various sampling site of Karaj River during spring 2013. The aquatic insects were collected using several methods such as D-frame nets, dipping and direct search on river floor stones. Specimens were collected and preserved in Ethanol and identified by standard identification keys. Totally, 211 samples were collected belonging to three orders; Plecoptera, Trichoptera and Ephemeroptera. Seven genuses (Perla, Isoperla, Hydropsyche, Cheumatopsyche, Baetis, Heptagenia and Maccafferium) from five families (Perlidae, Perlodidae, Hydropsychidae, Batidae, Heptagenidae) were identified. The most predominant order was Plecoptera followed by Trichoptera. Karaj River is a main and important river, which provides almost all of water of Karaj dam. So, identification of aquatic species which exist in this river is vital and further studies about systematic and ecological investigations should be performed. Also, monitoring of aquatic biota by trained health personnel can be a critical step to describe water quality in this river. Understanding the fauna of aquatic insects will provide a clue for possible biological control of medically important aquatic insects such as Anopheles as the malaria vectors.


Assuntos
Anopheles , Insetos Vetores , Malária/prevenção & controle , Controle Biológico de Vetores , Rios , Animais , Irã (Geográfico) , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA