Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Environ Microbiol Rep ; 16(3): e13265, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38747207

RESUMO

Role of dust in Salmonella transmission on chicken farms is not well characterised. Salmonella Typhimurium (ST) infection of commercial layer chickens was investigated using a novel sprinkling method of chicken dust spiked with ST and the uptake compared to a conventional oral infection. While both inoculation methods resulted in colonisation of the intestines, the Salmonella load in liver samples was significantly higher at 7 dpi after exposing chicks to sprinkled dust compared to the oral infection group. Infection of chickens using the sprinkling method at a range of doses showed a threshold for colonisation of the gut and organs as low as 1000 CFU/g of dust. Caecal content microbiota analysis post-challenge showed that the profiles of chickens infected by the sprinkling and oral routes were not significantly different; however, both challenges induced differences when compared to the uninfected negative controls. Overall, the study showed that dust sprinkling was an effective way to experimentally colonise chickens with Salmonella and alter the gut microbiota than oral gavage at levels as low as 1000 CFU/g dust. This infection model mimics the field scenario of Salmonella infection in poultry sheds. The model can be used for future challenge studies for effective Salmonella control.


Assuntos
Galinhas , Poeira , Microbioma Gastrointestinal , Doenças das Aves Domésticas , Salmonelose Animal , Salmonella typhimurium , Animais , Galinhas/microbiologia , Salmonella typhimurium/crescimento & desenvolvimento , Poeira/análise , Salmonelose Animal/microbiologia , Salmonelose Animal/prevenção & controle , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/prevenção & controle , Ceco/microbiologia , Fígado/microbiologia
2.
Front Vet Sci ; 11: 1364731, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38686027

RESUMO

Among the Salmonella reduction strategies in poultry production, one option is to use a Salmonella vaccine. The aim of vaccinating layer flocks is to reduce the shedding of wild-type Salmonella in the poultry environment, thereby reducing the contamination of poultry products (eggs and meat). Nutritive diluent and a higher dose of vaccine may enhance its colonization potential in the gut of chickens. In this study, a commercially available live attenuated vaccine (Vaxsafe® ST) was reconstituted in different media and delivered orally to day-old chicks at three different doses (107, 108, and 109 CFU/chick). Gut colonization of the vaccine strain and the effects of vaccination on gut microbiota were assessed in commercial-layer chickens. The vaccine diluent and dosage minimally affected microbiota alpha diversity. Microbiota beta diversity was significantly different (P < 0.05) based on the vaccine diluent and dose, which indicated that the vaccinated and unvaccinated chickens had different gut microbial communities. Differences were noted in the abundance of several genera, including Blautia, Colidextribacter, Dickeya, Enterococcus, Lactobacillus, Pediococcus, and Sellimonas. The abundance of Colidextribacter was significantly lower in chickens that received vaccine reconstituted in Marek's and water diluents, while Lactobacillus abundance was significantly lower in the water group. The highest vaccine dose (109 CFU/chick) did not significantly alter (P > 0.05) the abundance of microbial genera. Chicken age affected the microbiota composition more significantly than the vaccine dose and diluent. The abundance of Lactobacillus, Blautia, Caproiciproducens, Pediococcus, and Colidextribacter was significantly higher on day 14 compared with day 7 post-vaccination. The Salmonella Typhimurium vaccine load in the caeca was not significantly affected by diluent and vaccine dose; however, it was significantly lower (P < 0.0001) on day 14 compared with day 7 post-vaccination. Overall, the S. Typhimurium vaccine minimally affected the gut microbiota structure of layer chicks, whereas changes in microbiota were more significant with chicken age.

3.
J Anim Sci Biotechnol ; 15(1): 20, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317171

RESUMO

BACKGROUND: The gut microbiota influences chicken health, welfare, and productivity. A diverse and balanced microbiota has been associated with improved growth, efficient feed utilisation, a well-developed immune system, disease resistance, and stress tolerance in chickens. Previous studies on chicken gut microbiota have predominantly focused on broiler chickens and have usually been limited to one or two sections of the digestive system, under controlled research environments, and often sampled at a single time point. To extend these studies, this investigation examined the microbiota of commercially raised layer chickens across all major gut sections of the digestive system and with regular sampling from rearing to the end of production at 80 weeks. The aim was to build a detailed picture of microbiota development across the entire digestive system of layer chickens and study spatial and temporal dynamics. RESULTS: The taxonomic composition of gut microbiota differed significantly between birds in the rearing and production stages, indicating a shift after laying onset. Similar microbiota compositions were observed between proventriculus and gizzard, as well as between jejunum and ileum, likely due to their anatomical proximity. Lactobacillus dominated the upper gut in pullets and the lower gut in older birds. The oesophagus had a high proportion of Proteobacteria, including opportunistic pathogens such as Gallibacterium. Relative abundance of Gallibacterium increased after peak production in multiple gut sections. Aeriscardovia was enriched in the late-lay phase compared to younger birds in multiple gut sections. Age influenced microbial richness and diversity in different organs. The upper gut showed decreased diversity over time, possibly influenced by dietary changes, while the lower gut, specifically cecum and colon, displayed increased richness as birds matured. However, age-related changes were inconsistent across all organs, suggesting the influence of organ-specific factors in microbiota maturation. CONCLUSION: Addressing a gap in previous research, this study explored the microbiota across all major gut sections and tracked their dynamics from rearing to the end of the production cycle in commercially raised layer chickens. This study provides a comprehensive understanding of microbiota structure and development which help to develop targeted strategies to optimise gut health and overall productivity in poultry production.

4.
Anim Nutr ; 15: 197-209, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38023383

RESUMO

The microbiota of the gastrointestinal tract influences gut health, which in turn strongly impacts the general health and productivity of laying hens. It is essential to characterise the composition and temporal development of the gut microbiota in healthy layers raised under different management systems, to understand the variations in typical healthy microbiota structure, so that deviations from this might be recognised and correlated with production and health issues when they arise. The present investigation aimed to study the temporal development and phylogenetic composition of the gut microbiota of four commercially raised layer flocks from hatch to end of the production cycle. Non-intrusive faecal sampling was undertaken as a proxy to represent the gut microbiota. Sequencing of 16S rRNA gene amplicons was used to characterise the microbiota. Beta diversity analysis indicated that each faecal microbiota was different across the four flocks and had subtly different temporal development patterns. Despite these inter-flock differences, common patterns of microbiota development were identified. Firmicutes and Proteobacteria were dominant at an early age in all flocks. The microbiota developed gradually during the rearing phase; richness and diversity increased after 42 d of age and then underwent significant changes in composition after the shift to the production farms, with Bacteroidota becoming more dominant in older birds. By developing a more profound knowledge of normal microbiota development in layers, opportunities to harness the microbiota to aid in the management of layer gut health and productivity may be more clearly seen and realised.

5.
Poult Sci ; 102(11): 103009, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37672838

RESUMO

The spin-chill process at poultry processing plants involves the immersion of chicken carcasses in cold water (<5°C) often containing sodium hypochlorite which significantly contributes to the reduction of bacterial loads. Cutting carcasses into pieces, however, has been linked with increases in Campylobacter and Salmonella counts. Here, the efficacy of PAA and ASC on reducing bacteria on skin-on, bone-in thigh cuts was investigated. Three concentrations of ASC (60, 112, and 225 ppm) and PAA (50, 75, 100 ppm) were used. Thighs were dipped into sanitizer and tested for total viable bacterial counts, Campylobacter load, and prevalence of Salmonella. The efficacy of PAA and ASC was also compared with chlorine (8 ppm). All sanitizers exhibited a greater log reduction compared with water. PAA at both 75 and 100 ppm resulted in significantly higher log reductions compared with the water only. PAA at 100 ppm and 225 ppm ASC were the most effective at reducing Campylobacter. All wash treatments reduced the proportion of Salmonella positive samples, but the greatest reduction was observed for 225 ppm ASC. Both concentrations of ASC resulted in a greater reduction in total viable counts compared with chlorine.

6.
Vet Microbiol ; 280: 109721, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36948084

RESUMO

Poultry vaccines are often administered using water as a suspension media and applied using an oral or coarse spray method. Gel-based vaccine diluents have been developed as an alternative vaccine delivery method. Gels are more viscous, and droplets adhere more effectively to feathers giving the vaccine a longer time to be ingested (through preening). Application of gel diluents with live bacterial vaccines, however, is limited. The present study tested a gel diluent prepared in various media, using a live, attenuated Salmonella Typhimurium vaccine, Vaxsafe ST. Reconstitution in gel diluent did not negatively affect vaccine viability or motility. The invasive capacity of vaccine suspended in gel diluent into cultured intestinal epithelial cells was also tested. Results demonstrated that vaccine suspended in gel diluent retained invasiveness. Day old chicks were orally administered with Vaxsafe ST suspended in gel diluent to characterize in vivo colonization capacity of the vaccine. The results revealed that the VaxSafe ST suspended in gel diluent could efficiently colonize the caeca of chicks, which is needed for the development of effective immunity.


Assuntos
Doenças das Aves Domésticas , Salmonelose Animal , Vacinas contra Salmonella , Animais , Salmonella typhimurium , Vacinas Atenuadas , Doenças das Aves Domésticas/microbiologia , Galinhas , Vacinas Bacterianas , Salmonelose Animal/prevenção & controle , Vacinação/veterinária , Vacinação/métodos
7.
Curr Opin Infect Dis ; 35(5): 431-435, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36098261

RESUMO

PURPOSE OF REVIEW: Nontyphoidal Salmonella is a major food safety concern in developed and developing countries. Table eggs are often linked to cases of foodborne gastrointestinal disease. This review is focused on the latest findings on foodborne Salmonella infections acquired from poultry products and their implications on food safety. RECENT FINDINGS: Salmonella Enteritidis (SE) and Salmonella Typhimurium (ST) are the predominant Salmonella serovars associated with human Salmonellosis. In Australia, ST is the predominant serovar but SE has been recently detected in some commercial free-range egg flocks. The Salmonella shedding in poultry flocks can be highly variable across different flocks and farms; as a result, the level of product contamination is largely attributed to the flock management. The microevolution in the ST genome after in-vivo passaging may have clinical significance. On farm use of Salmonella vaccines and/or interventions during the processing of the product can influence the bacterial load. The refrigeration of the product also influences the safety of the poultry product. SUMMARY: Many interventions are in place for the control of Salmonella from farm to fork. However, given the biosecurity challenges because of the increase in public demand for free-range products, the emergence of Salmonella virulent types and expensive diagnostics, ongoing collaborative efforts from farmers, regulators and public health officials are required.


Assuntos
Doenças Transmitidas por Alimentos , Infecções por Salmonella , Animais , Ovos/microbiologia , Humanos , Aves Domésticas/microbiologia , Infecções por Salmonella/epidemiologia , Infecções por Salmonella/microbiologia , Infecções por Salmonella/prevenção & controle , Salmonella enteritidis , Salmonella typhimurium
8.
Microbiol Spectr ; 10(4): e0069022, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35862957

RESUMO

Globally, Campylobacter spp. are the most common food-associated bacterial cause of human gastrointestinal disease. Campylobacteriosis is primarily associated with the consumption of contaminated chicken meat. Chemical decontamination of chicken carcasses during processing is one of the most effective interventions to mitigate Campylobacter contamination. Following exposure to sanitizers, however, sublethally injured populations of bacteria may persist. The risk that sublethally injured Campylobacter pose for public health is unknown. Furthermore, the virulence potential of sublethally injured Campylobacter jejuni during prolonged storage in relation to host pathogenesis and the host immune response has not been well established. Therefore, we evaluated the effects of sublethally injured C. jejuni on the host, after storage in chicken meat juice. C57BL/6 mice were infected with two C. jejuni chicken meat isolates or the ATCC 33291 strain that had been stored in the chicken meat juice, after exposure to chlorine or acidified sodium chlorite (ASC). Although chlorine exposure was unable to reduce intestinal colonization by C. jejuni, exposure to ASC significantly reduced the intestinal colonization and tissue translocation in mice. The expression of pro- and anti-inflammatory cytokine genes for interleukin-6 (IL-6), IL23a, and IL-10, Toll-like receptor 2 (TLR2) and TLR4 genes, and host stress response genes (CRP, MBL1, and NF-κB1) were significantly reduced following the exposure to ASC. Our results demonstrated that sublethally injured C. jejuni has reduced virulence potential and colonization in mice. The data contribute toward clarification of the importance of chemical decontamination during processing to minimize human campylobacteriosis. IMPORTANCE Campylobacter is the most common cause of bacterial gastrointestinal disease, and consumption of contaminated poultry is frequently identified as the source of bacteria. The survivability and virulence potential of sublethally injured Campylobacter following exposure to chemicals which are commonly used to eliminate Campylobacter during the poultry meat processing are of concern to the food industry, government health officials, and consumers. Here, we demonstrate that sublethally injured Campylobacter jejuni has reduced bacterial virulence and colonization potential in mice.


Assuntos
Infecções por Campylobacter , Campylobacter jejuni , Campylobacter , Animais , Campylobacter jejuni/genética , Galinhas/microbiologia , Cloro , Humanos , Carne/microbiologia , Camundongos , Camundongos Endogâmicos C57BL
9.
Food Microbiol ; 106: 104035, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35690439

RESUMO

Chicken meat is frequently contaminated with zoonotic bacterial pathogens such as Campylobacter spp and Salmonella spp. These two bacterial genera are commonly linked with cases of human gastrointestinal disease, thus mitigating their presence in the poultry meat supply chain is paramount. Here, the efficacy of two sanitizers, peroxyacetic acid (PAA) and acidified sodium chlorite (ASC), was tested using whole chicken carcasses obtained either prior to the inside/outside wash or the post-immersion spin chill steps of processing. Two concentrations of PAA (100 and 200 ppm) and ASC (450 and 900 ppm) were tested, and both significantly reduced total viable bacteria and Campylobacter counts per carcass. Both sanitizers also reduced the prevalence of Salmonella on whole carcasses from both processing steps. Log reduction of both the total viable and Campylobacter counts were, however, temperature and processing stage dependent. The efficacy of both PAA and ASC were also compared with sodium hypochlorite. No significant difference between the three sanitizers was observed for the reduction of TVC, Campylobacter or Salmonella using carcasses obtained at either processing step. These results demonstrate that PAA or ASC could be implemented as a replacement or used in addition to sodium hypochlorite to effectively reduce bacteria on whole carcasses.


Assuntos
Campylobacter , Ácido Peracético , Animais , Bactérias , Galinhas/microbiologia , Cloretos , Contagem de Colônia Microbiana , Manipulação de Alimentos/métodos , Microbiologia de Alimentos , Carne/microbiologia , Ácido Peracético/farmacologia , Salmonella , Hipoclorito de Sódio
10.
Sci Rep ; 11(1): 18026, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504138

RESUMO

Salmonella Typhimurium is a human pathogen associated with eggs and egg-derived products. In Australia, it is recommended that eggs should be refrigerated to prevent condensation that can enhance bacterial penetration across the eggshell. Except for the United States, the guidelines on egg refrigeration are not prescriptive. In the current study, in-vitro and in-vivo experiments were conducted to understand the role of egg storage temperatures (refrigerated vs ambient) on bacterial load and the virulence genes expression of Salmonella Typhimurium. The in-vitro egg study showed that the load of Salmonella Typhimurium significantly increased in yolk and albumen stored at 25 °C. The gene expression study showed that ompR, misL, pefA, spvA, shdA, bapA, and csgB were significantly up-regulated in the egg yolk stored at 5 °C and 25 °C for 96 h; however, an in-vivo study revealed that mice infected with egg yolk stored at 25 °C, developed salmonellosis from day 3 post-infection (p.i.). Mice fed with inoculated egg yolk, albumen, or eggshell wash stored at refrigerated temperature did not show signs of salmonellosis during the period of the experiment. Data obtained in this study highlighted the importance of egg refrigeration in terms of improving product safety.


Assuntos
Ovos/microbiologia , Inocuidade dos Alimentos/métodos , Refrigeração/métodos , Intoxicação Alimentar por Salmonella/prevenção & controle , Infecções por Salmonella/prevenção & controle , Salmonella typhimurium/patogenicidade , Animais , Austrália , Galinhas , Contagem de Colônia Microbiana , Feminino , Microbiologia de Alimentos , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Intoxicação Alimentar por Salmonella/microbiologia , Intoxicação Alimentar por Salmonella/patologia , Infecções por Salmonella/microbiologia , Infecções por Salmonella/patologia , Salmonella typhimurium/genética , Salmonella typhimurium/crescimento & desenvolvimento , Temperatura , Virulência
11.
NPJ Sci Food ; 5(1): 23, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34341355

RESUMO

Chemical decontamination during processing is used in many countries to mitigate the Campylobacter load on chicken meat. Chlorine is a commonly used sanitizer in poultry processing to limit foodborne bacterial pathogens but its efficacy is limited by high bacterial loads and organic material. Acidified sodium chlorite (ASC) is a potential alternative for poultry meat sanitization but little is known about its effects on the cellular response of Campylobacter. In this study, the sensitivity of C. jejuni isolates to ASC was established. RNAseq was performed to characterize the transcriptomic response of C. jejuni following exposure to either chlorine or ASC. Following chlorine exposure, C. jejuni induced an adaptive stress response mechanism. In contrast, exposure to ASC induced higher oxidative damage and cellular death by inhibiting all vital metabolic pathways and upregulating the genes involved in DNA damage and repair. The transcriptional changes in C. jejuni in response to ASC exposure suggest its potential as an effective sanitizer for use in the chicken meat industry.

12.
Anim Microbiome ; 3(1): 50, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315535

RESUMO

BACKGROUND: The chicken gut microbiota passes through different stages of maturation; therefore, strengthening it with well characterised probiotics increases its resilience required for optimum gut health and wellbeing. However, there is limited information on the interaction of Bacillus based probiotics with gut microbial community members in cage free laying chickens both in rearing and production phases of life. In the current study, we investigated the changes in the gut microbiome of free range hens in the field after Bacillus based probiotic supplementation. RESULTS: Overall, at phylum level, probiotic supplementation increased the populations of Bacteroidetes and Proteobacteria mainly at the expense of Firmicutes. The population of Bacteroidetes significantly increased during the production as compared to the rearing phase, and its higher population in the probiotic-supplemented chickens reflects the positive role of Bacillus based probiotic in gut health. Core differences in the beta diversity suggest that probiotic supplementation decreased microbial compositionality. The non-significant difference in alpha diversity between the probiotic and control chickens showed that the composition of community structure did not change. No Salmonella spp. were isolated from the probiotic supplemented birds. Egg internal quality was significantly higher, while egg production and body weight did not differ. Functional prediction data showed that probiotic supplementation enriched metabolic pathways, such as vitamin B6 metabolism, phenylpropanoid biosynthesis, monobactam biosynthesis, RNA degradation, retinol metabolism, pantothenate and CoA biosynthesis, phosphonate and phosphinate metabolism, AMPK signaling pathway, cationic antimicrobial peptide (CAMP) resistance and tyrosine metabolism. CONCLUSIONS: Overall, age was the main factor affecting the composition and diversity of gut microbiota, where probiotic supplementation improved the abundance of many useful candidates in the gut microbial communities. The generated baseline data in the current study highlights the importance of the continuous use of Bacillus based probiotic for optimum gut health and production.

13.
J Anim Sci Biotechnol ; 12(1): 78, 2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34090517

RESUMO

BACKGROUND: Gut microbiota plays a key role in health, immunity, digestion, and production in layers. Factors such as environment, diet, diseases, stress, and flock management significantly affect gut microbiota; however, it is not known how potential stressors such as intramuscular injections or feed withdrawal alter the composition of gut microbiota that result in increased the shedding level of foodborne pathogens. In the current study, the effects of intramuscular corticosterone injection and feed withdrawal were evaluated to understand their role in Salmonella Typhimurium shedding and changes in the composition of gut microbiota in layers. RESULTS: Salmonella shedding was observed for 8 weeks post-infection. There was a significant increase in Salmonella Typhimurium count after intramuscular injection and feed withdrawal. The Salmonella infected and the negative control groups showed significant differences in the abundance of different genera in gut microbiota at week 1 and up to week 7 post infection. The infected group showed a significant reduction in alpha diversity of gut microbiota. Firmicutes reduced significantly (P < 0.05) after intramuscular injection, while the feed withdrawal groups did not cause any significant changes in Proteobacteria-Firmicutes ratio. Furthermore, intramuscular injection resulted in a significant change in alpha diversity of gut microbiota. CONCLUSIONS: Exposure of chicks to relatively low dose of Salmonella Typhimurium can lead to persistent shedding in pullets. The Salmonella Typhimurium infection disrupted the gut microbiota composition immediately after infection. The potential stress of intramuscular injection and feed withdrawal significantly increased the Salmonella Typhimurium count in faeces. The intramuscular injection also resulted in a significant alteration of the Proteobacteria-Firmicutes ratio, which could increase the risk of dysbiosis.

14.
Avian Pathol ; 50(4): 295-310, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34126817

RESUMO

Infectious bronchitis virus (IBV) was first isolated in Australia in 1962. Ongoing surveillance and characterization of Australian IBVs have shown that they have evolved separately from strains found throughout the rest of the world, resulting in the evolution of a range of unique strains and changes in the dominant wild-type strains, affecting tissue tropism, pathogenicity, antigenicity, and gene arrangement. Between 1961 and 1976 highly nephropathogenic genotype GI-5 and GI-6 strains, causing mortalities of 40% to 100%, predominated, while strains causing mainly respiratory disease, with lower mortality rates, have predominated since then. Since 1988, viruses belonging to two distinct and novel genotypes, GIII and GV, have been detected. The genome organization of the GIII strains has not been seen in any other gammacoronavirus. Mutations that emerged soon after the introduction of vaccination, incursion of strains with a novel lineage from unknown sources, recombination between IBVs from different genetic lineages, and gene translocations and deletions have contributed to an increasingly complex IBV population. These processes and the consequences of this variation for the biology of these viruses provide an insight into the evolution of endemic coronaviruses during their control by vaccination and may provide a better understanding of the potential for evolution of other coronaviruses, including SARS-CoV-2. Furthermore, the continuing capacity of attenuated IBV vaccines developed over 40 years ago to provide protection against viruses in the same genetic lineage provides some assurance that coronavirus vaccines developed to control other coronaviruses may continue to be effective for an extended period.


Assuntos
Evolução Biológica , Galinhas , Infecções por Coronaviridae/veterinária , Vírus da Bronquite Infecciosa/fisiologia , Doenças das Aves Domésticas/virologia , Animais , Variação Antigênica , Austrália/epidemiologia , Infecções por Coronaviridae/epidemiologia , Infecções por Coronaviridae/prevenção & controle , Infecções por Coronaviridae/virologia , Evolução Molecular , Variação Genética , Vírus da Bronquite Infecciosa/classificação , Vírus da Bronquite Infecciosa/genética , Vírus da Bronquite Infecciosa/imunologia , Fenótipo , Filogenia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/prevenção & controle , Vacinas Virais
15.
Appl Microbiol Biotechnol ; 105(11): 4719-4730, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34014348

RESUMO

Gut health has major implications for the general health of food-producing animals such as the layer birds used in the egg industry. In order to modulate gut microbiota for the benefit of gut health, an understanding of the dynamics and details of the development of gut microbiota is critical. The present study investigated the phylogenetic composition of the gut microbiota of a commercial layer flock raised in cages from hatch to the end of the production cycle. This study also aimed to understand the establishment and development of gut microbiota in layer chickens. Results showed that the faecal microbiota was dominated by phyla Firmicutes and Proteobacteria in the rearing phase, but Bacteroidetes in mid lay and late lay phase. The gut microbiota composition changed significantly during the transfer of the flock from the rearing to the production shed. The richness and diversity of gut microbiota increased after week 6 of the flocks age and stabilized in the mid and late lay phase. The overall dynamics of gut microbiota development was similar to that reported in earlier studies, but the phylogenetic composition at the phylum and family level was different. The production stage of the birds is one of the important factors in the development of gut microbiota. This study has contributed to a better understanding of baseline gut microbiota development over the complete life cycles in layer chickens and will help to develop strategies to improve the gut health. KEY POINTS: • Faecal microbiota of caged hens was dominated by phyla Firmicutes and Proteobacteria in the rearing phase. • The gut microbiota composition changed significantly during the transfer of the flock from the rearing to the production shed. • The richness and diversity of gut microbiota increased after week 6 of the flocks age and stabilized in the mid and late lay phase.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Galinhas , Fezes , Feminino , Filogenia
16.
Food Res Int ; 141: 110117, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33641984

RESUMO

Despite food safety recommendations, raw egg-based foods, such as mayonnaise, are frequently identified as the source of Salmonella during outbreaks. Acidification and storage temperature have been linked with reduced bacterial culturability. Raw egg-based sauces stored at 25 °C have historically been linked with faster decline of Salmonella culturability than preparations stored at 5 °C. This study aimed to determine whether reduced culturability in acidified mayonnaise correlated with reduced in vitro bacterial motility, invasiveness and viability as well as disease-causing capacity in BALB/c mice. Acidification of mayonnaise and incubation at 25 °C for 4 h significantly reduced culturability of Salmonella Typhimurium DT9 but was dependent on initial bacterial load. Bacteria recovered from acidified mayonnaise exhibited reduced invasiveness into polarized cultured intestinal epithelial cells and 12 h post inoculation were no longer invasive suggesting a reduced capacity to cause disease. To confirm this, BALB/c mice were inoculated with Salmonella Typhimurium contaminated mayonnaise stored at 5 °C or 25 °C for 12, 24, 48, 72, and 96 h. Mice inoculated with mayonnaise incubated at 5 °C for 12 and 24 h exhibited mild to moderate disease symptoms; all other mayonnaise treatment groups did not exhibit disease symptoms. In acidified mayonnaise, Salmonella Typhimurium DT9 exhibited a global downregulation of metabolism, stress response, and virulence genes upon addition to mayonnaise. After 4 h of incubation at both 5 °C and 25 °C, however, the vast majority of genes were upregulated which was maintained over the 96-hour experiment suggesting that bacteria were severely stressed. Salmonella Typhimurium DT9 cells were isolated from mayonnaise samples and ATP production was quantified. At both 5 °C and 25 °C, ATP production decreased in acidified mayonnaise preparations. At 25 °C, ATP production decreased more rapidly than at 5 °C. After 24 h, ATP production of bacteria in mayonnaise stored at 25 °C was not significantly different from the dead control group. Thus, the current recommendation of only serving freshly prepared raw egg-sauces or refrigerating immediately after preparation, could be placing consumers at higher risk for contracting salmonellosis.


Assuntos
Salmonella typhimurium , Animais , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Endogâmicos BALB C , Salmonella typhimurium/genética , Temperatura , Virulência
17.
Int J Food Microbiol ; 340: 109042, 2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33461002

RESUMO

The development of antimicrobial resistance in foodborne pathogens is a growing public health concern. This study was undertaken to determine the antimicrobial susceptibility of Salmonella enterica subspecies enterica isolated from the Australian commercial egg layer industry. S. enterica subspecies enterica (n=307) isolated from Australian commercial layer flock environments (2015-2018) were obtained from reference, research and State Government laboratories from six Australian states. All Salmonella isolates were serotyped. Antimicrobial susceptibility testing (AST) for 16 antimicrobial agents was performed by broth microdilution. Antimicrobial resistance genes and sequence types (STs) were identified in significant isolates by whole genome sequencing (WGS). Three main serotypes were detected, S. Typhimurium (n=61, 19.9%), S. Senftenburg (n=45, 14.7%) and S. Agona (n=37, 12.1%). AST showed 293/307 (95.4%) isolates were susceptible to all tested antimicrobial agents and all isolates were susceptible to amoxicillin-clavulanate, azithromycin, ceftiofur, ceftriaxone, ciprofloxacin, colistin, florfenicol, gentamicin, kanamycin and trimethoprim-sulfamethoxazole. Low levels of non-susceptibility were observed to streptomycin (2.3%, n=7), sulfisoxazole (2.0%, n=6), chloramphenicol (1.3%, n=4) and tetracycline (1.0%, n=3). Very low levels of non-susceptibility were observed to ampicillin (2/307; 0.7%) and cefoxitin (2/307; 0.7%). Two isolates (S. Havana and S. Montevideo), exhibited multidrug-resistant phenotypes to streptomycin, sulfisoxazole and tetracycline and possessed corresponding antimicrobial resistance genes (aadA4, aac(6')-Iaa, sul1, tetB). One S. Typhimurium isolate was resistant to ampicillin and tetracycline, and possessed both tetA and blaTEM-1B. WGS also identified these isolates as belonging to ST4 (S. Montevideo), ST578 (S. Havana) and ST19 (S. Typhimurium). The absence of resistance to highest priority critically important antimicrobials as well as the extremely low level of AMR generally among Australian commercial egg layer Salmonella isolates likely reflect Australia's conservative antimicrobial registration policy in food-producing animals and low rates of antimicrobial use within the industry.


Assuntos
Antibacterianos/farmacologia , Galinhas/microbiologia , Farmacorresistência Bacteriana , Abrigo para Animais , Aves Domésticas/microbiologia , Salmonella enterica/efeitos dos fármacos , Animais , Austrália , Ciprofloxacina/farmacologia , Farmacorresistência Bacteriana/genética , Farmacorresistência Bacteriana Múltipla/genética , Genoma Bacteriano , Testes de Sensibilidade Microbiana , Salmonella enterica/isolamento & purificação , Sorogrupo , Sequenciamento Completo do Genoma
18.
Vaccines (Basel) ; 8(4)2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33228065

RESUMO

Salmonella Typhimurium is among the most common causes of bacterial foodborne gastrointestinal disease in humans. Food items containing raw or undercooked eggs are frequently identified during traceback investigation as the source of the bacteria. Layer hens can become persistently infected with Salmonella Typhimurium and intermittently shed the bacteria over the course of their productive lifetime. Eggs laid in a contaminated environment are at risk of potential exposure to bacteria. Thus, mitigating the bacterial load on farms aids in the protection of the food supply chain. Layer hen producers use a multifaceted approach for reducing Salmonella on farms, including the all-in-all-out management strategy, strict biosecurity, sanitization, and vaccination. The use of live attenuated Salmonella vaccines is favored because they elicit a broader host immune response than killed or inactivated vaccines that have been demonstrated to provide cross-protection against multiple serovars. Depending on the vaccine, two to three doses of Salmonella Typhimurium vaccines are generally administered to layer hens within the first few weeks. The productive life of a layer hen, however, can exceed 70 weeks and it is unclear whether current vaccination regimens are effective for that extended period. The objective of this review is to highlight layer hen specific challenges that may affect vaccine efficacy.

19.
Front Microbiol ; 11: 581201, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072053

RESUMO

Determining the viable and non-viable load of foodborne pathogens in animal production can be useful in reducing the number of human outbreaks. In this study, we optimized a PMAxxTM-based qPCR for quantifying viable and non-viable load of Salmonella from soil collected from free range poultry environment. The optimized nucleic acid extraction method resulted in a significantly higher (P < 0.05) yield and quality of DNA from the pure culture and Salmonella inoculated soil samples. The optimized primer for the amplification of the invA gene fragment showed high target specificity and a minimum detection limit of 102 viable Salmonella from soil samples. To test the optimized PMAxxTM-based qPCR assay, soil obtained from a free range farm was inoculated with Salmonella Enteritidis or Salmonella Typhimurium, incubated at 5, 25, and 37°C over 6 weeks. The survivability of Salmonella Typhimurium was significantly higher than Salmonella Enteritidis. Both the serovars showed moisture level dependent survivability, which was significantly higher at 5°C compared with 25°C and 37°C. The PMAxxTM-based qPCR was more sensitive in quantifying the viable load compared to the culture method used in the study. Data obtained in the current study demonstrated that the optimized PMAxxTM-based qPCR is a suitable assay for quantification of a viable and non-viable load of Salmonella from poultry environment. The developed assay has applicability in poultry diagnostics for determining the load of important Salmonella serovars containing invA.

20.
Appl Microbiol Biotechnol ; 104(21): 9327-9342, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32960293

RESUMO

Temporal regulation of global gene expression in the caeca of chickens infected with Salmonella Typhimurium has not been investigated previously. In this study, we performed the transcriptome analysis of the caeca of Salmonella Typhimurium challenged chicks to understand the regulation of the mucosal immune system in a temporal manner. The Salmonella infection resulted in the activation of the caecal immune system by the upregulation of the differentially expressed genes (DEGs; false discovery rate (FDR) < 0.05; log2 fold change > 1) involved in biological pathways such as Toll-like receptor signaling pathway, Salmonella infection, cytokine-cytokine receptor interaction, phagosome, apoptosis and intestinal immune network for IgA production. The activation of biological pathways such as RIG-I-like receptor signaling pathway, ErbB signaling pathway and cellular senescence showed a time-dependent response of the host immune system. A 49% increase in the DEGs on day 7 compared with day 3 post-infection (p.i.) suggested a time-dependent role of multiple genes such as AvBD1, AvBD2, AvBD7, IL2, IL10, IL21, SIVA1, CD5, CD14 and GPR142 in the regulation of the immune system. Nested network analysis of the individual biological pathways showed that IL6 played a significant role in the immune system regulation by activating the pathways, including Toll-like receptor signaling pathway, Salmonella infection, intestinal immune network for IgA production and C-type lectin receptor signaling pathway. The downregulated DEGs (FDR < 0.05; log2 fold change < -1) showed that Salmonella challenge affected the functions of pathways, such as tryptophan metabolism, retinol metabolism, folate biosynthesis and pentose and glucoronate interconversions, suggesting the disruption of cellular mechanisms involved in nutrient synthesis, absorption and metabolism. Overall, the immune response was temporally regulated through the activation of Toll-like signaling receptor pathway, cytokine-cytokine interactions and Salmonella infection, where IL6 played a significant role in the modulation of caecal immune system against Salmonella Typhimurium. KEY POINTS: • The immune response to Salmonella Typhimurium challenge was temporally regulated in the caeca of chickens. • Many newly identified genes have been shown to be involved in the activation of the immune system. • Toll-like receptors and interleukins played a key role in immune system regulation.


Assuntos
Galinhas , Salmonella typhimurium , Animais , Ceco , Perfilação da Expressão Gênica , Imunidade nas Mucosas , Salmonella typhimurium/genética , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA