Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Front Oncol ; 13: 1156843, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37799462

RESUMO

Introduction: 1.5 Tesla (1.5T) remain a significant field strength for brain imaging worldwide. Recent computer simulations and clinical studies at 3T MRI have suggested that dynamic susceptibility contrast (DSC) MRI using a 30° flip angle ("low-FA") with model-based leakage correction and no gadolinium-based contrast agent (GBCA) preload provides equivalent relative cerebral blood volume (rCBV) measurements to the reference-standard acquisition using a single-dose GBCA preload with a 60° flip angle ("intermediate-FA") and model-based leakage correction. However, it remains unclear whether this holds true at 1.5T. The purpose of this study was to test this at 1.5T in human high-grade glioma (HGG) patients. Methods: This was a single-institution cross-sectional study of patients who had undergone 1.5T MRI for HGG. DSC-MRI consisted of gradient-echo echo-planar imaging (GRE-EPI) with a low-FA without preload (30°/P-); this then subsequently served as a preload for the standard intermediate-FA acquisition (60°/P+). Both normalized (nrCBV) and standardized relative cerebral blood volumes (srCBV) were calculated using model-based leakage correction (C+) with IBNeuro™ software. Whole-enhancing lesion mean and median nrCBV and srCBV from the low- and intermediate-FA methods were compared using the Pearson's, Spearman's and intraclass correlation coefficients (ICC). Results: Twenty-three HGG patients composing a total of 31 scans were analyzed. The Pearson and Spearman correlations and ICCs between the 30°/P-/C+ and 60°/P+/C+ acquisitions demonstrated high correlations for both mean and median nrCBV and srCBV. Conclusion: Our study provides preliminary evidence that for HGG patients at 1.5T MRI, a low FA, no preload DSC-MRI acquisition can be an appealing alternative to the reference standard higher FA acquisition that utilizes a preload.

2.
Magn Reson Med ; 89(1): 161-176, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36128892

RESUMO

PURPOSE: To develop an MR multitasking-based dynamic imaging for cerebrovascular evaluation (MT-DICE) technique for simultaneous quantification of permeability and leakage-insensitive perfusion with a single-dose contrast injection. METHODS: MT-DICE builds on a saturation-recovery prepared multi-echo fast low-angle shot sequence. The k-space is randomly sampled for 7.6 min, with single-dose contrast agent injected 1.5 min into the scan. MR multitasking is used to model the data into six dimensions, including three spatial dimensions for whole-brain coverage, a saturation-recovery time dimension, and a TE dimension for dynamic T 1 $$ {\mathrm{T}}_1 $$ and T 2 * $$ {\mathrm{T}}_2^{\ast } $$ quantification, respectively, and a contrast dynamics dimension for capturing contrast kinetics. The derived pixel-wise T 1 / T 2 * $$ {\mathrm{T}}_1/{\mathrm{T}}_2^{\ast } $$ time series are converted into contrast concentration-time curves for calculation of kinetic metrics. The technique was assessed for its agreement with reference methods in T 1 $$ {\mathrm{T}}_1 $$ and T 2 * $$ {\mathrm{T}}_2^{\ast } $$ measurements in eight healthy subjects and, in three of them, inter-session repeatability of permeability and leakage-insensitive perfusion parameters. Its feasibility was also demonstrated in four patients with brain tumors. RESULTS: MT-DICE T 1 / T 2 * $$ {\mathrm{T}}_1/{\mathrm{T}}_2^{\ast } $$ values of normal gray matter and white matter were in excellent agreement with reference values (intraclass correlation coefficients = 0.860/0.962 for gray matter and 0.925/0.975 for white matter ). Both permeability and perfusion parameters demonstrated good to excellent intersession agreement with the lowest intraclass correlation coefficients at 0.694. Contrast kinetic parameters in all healthy subjects and patients were within the literature range. CONCLUSION: Based on dynamic T 1 / T 2 * $$ {\mathrm{T}}_1/{\mathrm{T}}_2^{\ast } $$ mapping, MT-DICE allows for simultaneous quantification of permeability and leakage-insensitive perfusion metrics with a single-dose contrast injection.


Assuntos
Meios de Contraste , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Perfusão , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Permeabilidade
3.
Nat Commun ; 12(1): 4031, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34188042

RESUMO

The response of patients with recurrent glioblastoma multiforme to neoadjuvant immune checkpoint blockade has been challenging to interpret due to the inter-patient and intra-tumor heterogeneity. We report on a comparative analysis of tumor tissues collected from patients with recurrent glioblastoma and high-risk melanoma, both treated with neoadjuvant checkpoint blockade. We develop a framework that uses multiplex spatial protein profiling, machine learning-based image analysis, and data-driven computational models to investigate the pathophysiological and molecular factors within the tumor microenvironment that influence treatment response. Using melanoma to guide the interpretation of glioblastoma analyses, we interrogate the protein expression in microscopic compartments of tumors, and determine the correlates of cytotoxic CD8+ T cells, tumor growth, treatment response, and immune cell-cell interaction. This work reveals similarities shared between glioblastoma and melanoma, immunosuppressive factors that are unique to the glioblastoma microenvironment, and potential co-targets for enhancing the efficacy of neoadjuvant immune checkpoint blockade.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Antígeno CTLA-4/antagonistas & inibidores , Glioblastoma/tratamento farmacológico , Inibidores de Checkpoint Imunológico/uso terapêutico , Melanoma/tratamento farmacológico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Adulto , Idoso , Antineoplásicos Imunológicos/uso terapêutico , Biomarcadores Tumorais/análise , Neoplasias Encefálicas/patologia , Linfócitos T CD8-Positivos/imunologia , Feminino , Glioblastoma/patologia , Humanos , Ipilimumab/uso terapêutico , Masculino , Pessoa de Meia-Idade , Terapia Neoadjuvante , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/patologia , Nivolumabe/uso terapêutico , Resultado do Tratamento , Microambiente Tumoral/imunologia
4.
Neurooncol Adv ; 2(1): vdaa009, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32118206

RESUMO

BACKGROUND: Targeted next-generation sequencing (NGS) is frequently obtained at the University of California, Los Angeles (UCLA) for clinical characterization of CNS tumors. In this study, we describe the diagnostic reliability of the Foundation Medicine (FM) targeted NGS platform and its ability to explore and identify tumor characteristics of prognostic significance in gliomas. METHODS: Neuro-oncology patients seen at UCLA who have received FM testing between August 2012 and March 2019 were included in this study, and all mutations from FM test reports were recorded. Initial tumor diagnoses and diagnostic markers found via standard clinical methods were obtained from pathology reports. With overall and progression-free survival data, elastic net regularized Cox regression and Cox proportional hazards models were used to determine whether any mutations of unknown significance detected by FM could predict patient outcome in glioblastoma (GBM). RESULTS: Six hundred and three samples tested by FM from 565 distinct patients were identified. Concordance of diagnostic markers was high between standard clinical testing methods and FM. Oligodendroglial markers detected via FM were highly correlated with 1p19q codeletion in IDH mutated gliomas. FM testing of multiple tumor samples from the same patient demonstrated temporal and spatial mutational heterogeneity. Mutations in BCORL1, ERBB4, and PALB2, which are mutations of unknown significance in GBM, were shown to be statistically significant in predicting patient outcome. CONCLUSIONS: In our large cohort, we found that targeted NGS can both reliably and efficiently detect important diagnostic markers in CNS tumors.

5.
Front Neurol ; 10: 1140, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31736856

RESUMO

Introduction: ß-Amyloid protein (Aß) putatively plays a seminal role in synaptic loss in Alzheimer's disease (AD). While there is no consensus regarding the synaptic-relevant species of Aß, it is known that Aß oligomers (AßOs) are noticeably increased in the early stages of AD, localizing at or within the synapse. In cell and animal models, AßOs have been shown to attach to synapses and instigate synapse dysfunction and deterioration. To establish the pathological mechanism of synaptic loss in AD, it will be important to identify the synaptic targets to which AßOs attach. Methods: An unbiased approach using far western ligand blots has identified three synaptic proteins to which AßOs specifically attach. These proteins (p100, p140, and p260) were subsequently enriched by detergent extraction, ultracentrifugation, and CHT-HPLC column separation, and sequenced by LC-MS/MS. P100, p140, and p260 were identified. These levels of AßOs targets in human AD and aging frontal cortexes were analyzed by quantitative proteomics and western-blot. The polyclonal antibody to AßOs was developed and used to block the toxicity of AßOs. The data were analyzed with one-way analysis of variance. Results: AßOs binding proteins p100, p140, and p260 were identified as Na/K-ATPase, synGap, and Shank3, respectively. α3-Na/K-ATPase, synGap, and Shank3 proteins showed loss in the postsynaptic density (PSD) of human AD frontal cortex. In short term experiments, oligomers of Aß inhibited Na/K-ATPase at the synapse. Na/K-ATPase activity was restored by an antibody specific for soluble forms of Aß. α3-Na/K-ATPase protein and synaptic ß-amyloid peptides were pulled down from human AD synapses by co-immunoprecipitation. Results suggest synaptic dysfunction in early stages of AD may stem from inhibition of Na/K-ATPase activity by Aß oligomers, while later stages could hypothetically result from disrupted synapse structure involving the PSD proteins synGap and Shank3. Conclusion: We identified three AßO binding proteins as α3-Na/K-ATPase, synGap, and Shank3. Soluble Aß oligomers appear capable of attacking neurons via specific extracellular as well as intracellular synaptic proteins. Impact on these proteins hypothetically could lead to synaptic dysfunction and loss, and could serve as novel therapeutic targets for AD treatment by antibodies or other agents.

6.
CNS Oncol ; 8(2): CNS35, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31293169

RESUMO

Aim: Long-term survivors (LTS) after glioma recurrence while on bevacizumab (Bev) therapy are rarely reported in the current literature. The purpose of this case series is to confirm the existence of and describe a large cohort of recurrent glioma LTS treated with Bev (Bev-LTS). Patients & methods: We identified Bev-LTS as patients with post-Bev initiation survival times of ≥3 years among 1397 Bev treated recurrent glioma patients. Results: Among 962 grade-IV, 221 grade III, and 214 grade II Bev-treated glioma patients, we identified 28 (2.9%), 14 (6.3%) and 8 (3.7%) Bev-LTS patients, respectively. 45 Bev-LTS patients recurred on Bev, with 36 of those patients continuing therapy. Conclusion: Our study shows that a small portion of grade-IV, -III, and -II glioma patients can have long-term survival on Bev therapy even after Bev recurrence.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Bevacizumab/uso terapêutico , Glioma/tratamento farmacológico , Glioma/mortalidade , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/mortalidade , Sobreviventes/estatística & dados numéricos , Adulto , Idoso , California/epidemiologia , Estudos de Coortes , Feminino , Glioma/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/patologia , Estudos Retrospectivos , Resultado do Tratamento , Adulto Jovem
7.
Neural Plast ; 2017: 3270725, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28458925

RESUMO

Synaptic loss is the structural basis for memory impairment in Alzheimer's disease (AD). While the underlying pathological mechanism remains elusive, it is known that misfolded proteins accumulate as ß-amyloid (Aß) plaques and hyperphosphorylated Tau tangles decades before the onset of clinical disease. The loss of Pin1 facilitates the formation of these misfolded proteins in AD. Pin1 protein controls cell-cycle progression and determines the fate of proteins by the ubiquitin proteasome system. The activity of the ubiquitin proteasome system directly affects the functional and structural plasticity of the synapse. We localized Pin1 to dendritic rafts and postsynaptic density (PSD) and found the pathological loss of Pin1 within the synapses of AD brain cortical tissues. The loss of Pin1 activity may alter the ubiquitin-regulated modification of PSD proteins and decrease levels of Shank protein, resulting in aberrant synaptic structure. The loss of Pin1 activity, induced by oxidative stress, may also render neurons more susceptible to the toxicity of oligomers of Aß and to excitation, thereby inhibiting NMDA receptor-mediated synaptic plasticity and exacerbating NMDA receptor-mediated synaptic degeneration. These results suggest that loss of Pin1 activity could lead to the loss of synaptic plasticity in the development of AD.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Plasticidade Neuronal , Densidade Pós-Sináptica/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/patologia , Células Cultivadas , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/patologia , Proteína 4 Homóloga a Disks-Large/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Peptidilprolil Isomerase de Interação com NIMA/genética , Proteínas do Tecido Nervoso/metabolismo , Fosforilação , Densidade Pós-Sináptica/patologia , Receptores de N-Metil-D-Aspartato/metabolismo , Ubiquitina/metabolismo , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA