Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mycoses ; 67(7): e13762, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38951663

RESUMO

Infections are well-known complications in patients following traumatic injuries, frequently leading to high morbidity and mortality. In particular, trauma occurring in disaster settings, both natural and man-made, such as armed conflicts and explosives detonation, results in challenging medical conditions that impede the best management practices. The incidence of invasive fungal infections (IFI) is increasing in trauma patients who lack the typical risk factors like an immune compromised state or others. This narrative review will focus on IFI as a direct complication after natural disasters, wars, and man-made mass destruction with a summary of the available evidence about the epidemiology, clinical manifestations, risk factors, microbiology, and proper management. In this setting, the clinical manifestations of IFI may include skin and soft tissue infections, osteomyelitis, visceral infections, and pneumonia. IFI should be considered in the war inflicted patients who are exposed to unsterile environments or have wounds contaminated with soil and decaying organic matter.


Assuntos
Infecções Fúngicas Invasivas , Humanos , Infecções Fúngicas Invasivas/epidemiologia , Desastres Naturais , Fatores de Risco , Guerra , Antifúngicos/uso terapêutico , Incidência
2.
bioRxiv ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38562863

RESUMO

Candida auris , a multidrug-resistant human fungal pathogen, was first identified in 2009 in Japan. Since then, systemic C. auris infections have now been reported in more than 50 countries, with mortality rates of 30-60%. A major contributing factor to its high inter- and intrahospital clonal transmission is that C. auris, unlike most Candida species, displays unique skin tropism and can stay on human skin for a prolonged period. However, the molecular mechanisms responsible for C. auris skin colonization, intradermal persistence, and systemic virulence are poorly understood. Here, we report that C. auris Hog1 mitogen-activated protein kinase (MAPK) is essential for efficient skin colonization, intradermal persistence, as well as systemic virulence. RNA-seq analysis of wildtype parental and hog1 Δ mutant strains revealed marked down-regulation of genes involved in processes such as cell adhesion, cell-wall rearrangement, and pathogenesis in hog1 Δ mutant compared to the wildtype parent. Consistent with these data, we found a prominent role for Hog1 in maintaining cell-wall architecture, as the hog1 Δ mutant demonstrated a significant increase in cell-surface ß-glucan exposure and a concomitant reduction in chitin content. Additionally, we observed that Hog1 was required for biofilm formation in vitro and fungal survival when challenged with primary murine macrophages and neutrophils ex vivo . Collectively, these findings have important implications for understanding the C. auris skin adherence mechanisms and penetration of skin epithelial layers preceding bloodstream infections. Importance: Candida auris is a World Health Organization (WHO) fungal priority pathogen and an urgent public health threat recognized by the Centers for Disease Control and Prevention (CDC). C. auris has a unique ability to colonize human skin. It also persists on abiotic surfaces in healthcare environments for an extended period of time. These attributes facilitate the inter- and intrahospital clonal transmission of C. auris . Therefore, understanding C. auris skin colonization mechanisms are critical for infection control, especially in hospitals and nursing homes. However, despite its profound clinical relevance, the molecular and genetic basis of C. auris skin colonization mechanisms are poorly understood. Herein, we present data on the identification of the Hog1 MAP kinase as a key regulator of C. auris skin colonization. These findings lay foundation for further characterization of unique mechanisms that promote fungal persistence on human skin.

3.
J Am Acad Dermatol ; 91(2): 315-323, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38574764

RESUMO

Trichophyton indotineae has emerged as a novel dermatophyte species resulting in treatment recalcitrant skin infections. While the earliest reports came from India, T. indotineae has now spread to many parts of the world and is rapidly becoming a global health concern. Accurate identification of T. indotineae requires elaborate mycological investigations which is beyond the domain of routine microbiology testing. Extensive, non-inflammatory and atypical presentations are commonly seen with this novel species. T. indotineae shows an alarmingly high rate of mutations in the squalene epoxidase gene leading to lowered in vitro susceptibility to terbinafine. This has also translated into a lowered clinical response and requirement of a higher dose and much longer durations of treatment with the drug. Although the species remains largely susceptible to itraconazole, prolonged treatment durations are required to achieve cure with itraconazole. Fluconazole and griseofulvin do not have satisfactory in vitro or clinical activity. Apart from requirement of prolonged treatment durations, relapse postsuccessful treatment is a distressing and yet unexplained consequence of this "species-shift." Use of third generation azoles and combinations of systemic antifungals is unwarranted as both have not demonstrated clear superiority over itraconazole given alone, and the former is an important class of drugs for invasive mycoses.


Assuntos
Antifúngicos , Tinha , Trichophyton , Humanos , Antifúngicos/uso terapêutico , Tinha/tratamento farmacológico , Tinha/diagnóstico , Tinha/microbiologia , Trichophyton/efeitos dos fármacos , Trichophyton/genética , Itraconazol/uso terapêutico , Terbinafina/uso terapêutico
4.
Lancet Microbe ; 5(6): e594-e605, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38518791

RESUMO

The effects of climate change and natural disasters on fungal pathogens and the risks for fungal diseases remain incompletely understood. In this literature review, we examined how fungi are adapting to an increase in the Earth's temperature and are becoming more thermotolerant, which is enhancing fungal fitness and virulence. Climate change is creating conditions conducive to the emergence of new fungal pathogens and is priming fungi to adapt to previously inhospitable environments, such as polluted habitats and urban areas, leading to the geographical spread of some fungi to traditionally non-endemic areas. Climate change is also contributing to increases in the frequency and severity of natural disasters, which can trigger outbreaks of fungal diseases and increase the spread of fungal pathogens. The populations mostly affected are the socially vulnerable. More awareness, research, funding, and policies on the part of key stakeholders are needed to mitigate the effects of climate change and disaster-related fungal diseases.


Assuntos
Mudança Climática , Fungos , Micoses , Desastres Naturais , Humanos , Fungos/patogenicidade , Micoses/epidemiologia , Micoses/microbiologia , Temperatura , Ecossistema
6.
Indian J Dermatol ; 68(5): 525-540, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38099117

RESUMO

The emergence and spread of Trichophyton indotineae (T. indotineae) has led to a sea change in the prescription practices of clinicians regarding the management of dermatophytic skin infections. An infection easily managed with a few weeks of antifungals, tinea corporis or cruris, is now often chronic and recurrent and requires prolonged treatment. Rising resistance to terbinafine, with documented squalene epoxidase (SQLE) gene mutations, and slow clinical response to itraconazole leave clinicians with limited treatment choices. However, in these testing times, it is essential that the tenets of antifungal stewardship be followed in making therapeutic decisions, and that the existing armamentarium of antifungals be used in rationale ways to counter this extremely common cutaneous infection, while keeping the growing drug resistance among dermatophytes in check. This review provides updated evidence on the use of various systemic antifungals for dermatophytic infection of the glabrous skin, especially with respect to the emerging T. indotineae species, which is gradually becoming a worldwide concern.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA