RESUMO
A two-cell system for the stimulation of herpes simplex virus type 1 (HSV-1) from an in vitro model of long-term (quiescent) infection is described. Rat pheochromocytoma (PC12) cells differentiated with nerve growth factor were infected with HSV-1 strain 17. Little, if any, cytotoxicity was observed, and a quiescent infection was established. The long-term infection was characterized by the absence of all detectable virus in the culture medium and little, if any, detectable early or late viral-gene expression as determined by reverse transcriptase PCR analysis. The presence of HSV-1 DNA was determined by PCR analysis. This showed that approximately 180 viral genomes were present in limiting dilutions where as few as 16 cells were examined. The viral DNA was infectious, since cocultivation with human corneal fibroblasts (HCF) or human corneal epithelial cells (HCE) resulted in recovery of virus from most, if not all, clusters of PC12 cells. Following cocultivation, viral antigens appeared first on PC12 cells and then on neighboring inducing cells, as determined by immunofluorescent staining, demonstrating that de novo viral protein synthesis first occurred in the long-term-infected PC12 cells. Interestingly, the ability to induce HSV varied among the cell lines tested. For example, monkey kidney CV-1 cells and human hepatoblastoma HepG2 cells, but not mouse neuroblastoma cells or undifferentiated PC12 cells, mediated stimulation. This work thus shows that (i) quiescent HSV infections can be maintained in PC12 cells in vitro, (ii) HSV can be induced from cells which do not accumulate significant levels of latency-associated transcripts, and (iii) the activation of HSV gene expression can be induced via neighboring cells. The ability of adjacent cells to stimulate HSV gene expression in neuron-like cells represents a novel area of study. The mechanism(s) whereby HCF, HCE, and HepG2 and CV-1 cells communicate with PC12 cells and stimulate viral replication, as well as how this system compares with other in vitro models of long-term infection, is discussed.
Assuntos
Córnea/citologia , Fibroblastos/fisiologia , Herpesvirus Humano 1/crescimento & desenvolvimento , Latência Viral , Animais , Antígenos Virais , Linhagem Celular , Chlorocebus aethiops , Técnicas de Cocultura , Expressão Gênica , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/fisiologia , Humanos , Camundongos , Fatores de Crescimento Neural/farmacologia , Células PC12 , Ratos , Fatores de Tempo , Células Tumorais Cultivadas , Ativação ViralRESUMO
We have previously shown that Actinobacillus actinomycetecomitans produces an immunosuppressive factor (ISF) capable of impairing human lymphocyte function by perturbing cell cycle progression. We now report that ISF is the product of the cdtB gene, one of three genes encoding the family of cytolethal distending toxins (Cdt). The ISF polypeptide exhibits >/=95% identity with Hemophilus ducreyi CdtB protein and =60% homology with Escherichia coli or Campylobacter jejuni CdtB. Pretreatment of PHA-activated lymphocytes with 5-25 ng ISF results in G2 arrest of CD4+ and CD8+ T cells. Similarly, treatment of HeLa cells results in G2 arrest and cell elongation and distension. However, lymphocytes are at least 5 times more sensitive to ISF than HeLa cells and do not undergo the elongation and distension that characterizes interactions of Cdts with cell lines. ISF-treated lymphocytes express normal cyclin A and B1 levels, but contain reduced levels of cell cycle-dependent kinase-1 (Cdk1). Additionally, the majority of Cdk1 is in the hyperphosphorylated, inactive, form. In contrast, PHA-induced G2 cells contain elevated levels of the hypophosphorylated, active Cdk1. Failure of ISF-treated cells to dephosphorylate Cdk1 is not associated with decreased availability of Cdc25. These studies suggest that the CdtB protein alone is capable of inducing G2 arrest in lymphocytes and cell cycle arrest, elongation, and distension of HeLa cells. Our studies also suggest that lymphocytes may be primary targets for A. actinomycetemcomitans CdtB (ISF) and possibly for other Cdt family members as well. Thus, Cdts may function to impair host immunity and contribute to the pathogenesis of disease associated with Cdt-producing organisms.