Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
ChemistryOpen ; : e202300260, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308174

RESUMO

Silicon and Germanium oxide (SiOx and GeOx ) nanostructures are promising materials for energy storage applications due to their potentially high energy density, large lithiation capacity (~10X carbon), low toxicity, low cost, and high thermal stability. This work reports a unique approach to achieving controlled synthesis of SiOx and GeOx nanostructures via photonic curing. Unlike conventional methods like rapid thermal annealing, quenching during pulsed photonic curing occurs rapidly (sub-millisecond), allowing the trapping of metastable states to form unique phases and nanostructures. We explored the possible underlying mechanism of photonic curing by incorporating laws of photophysics, photochemistry, and simulated temperature profile of thin film. The results show that photonic curing of spray coated 0.1 M molarity Si and Ge Acetyl Acetate precursor solution, at total fluence 80 J cm-2 can yield GeOx and SiOx nanostructures. The as-synthesized nanostructures are ester functionalized due to photoinitiated chemical reactions in thin film during photonic curing. Results also showed that nanoparticle size changes from ~48 nm to ~11 nm if overall fluence is increased by increasing the number of pulses. These results are an important contribution towards large-scale synthesis of the Ge and Si oxide nanostructured materials which is necessary for next-generation energy storage devices.

2.
Biosensors (Basel) ; 12(6)2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35735538

RESUMO

Biophysical insults that either reduce barrier function (COVID-19, smoke inhalation, aspiration, and inflammation) or increase mechanical stress (surfactant dysfunction) make the lung more susceptible to atelectrauma. We investigate the susceptibility and time-dependent disruption of barrier function associated with pulmonary atelectrauma of epithelial cells that occurs in acute respiratory distress syndrome (ARDS) and ventilator-induced lung injury (VILI). This in vitro study was performed using Electric Cell-substrate Impedance Sensing (ECIS) as a noninvasive evaluating technique for repetitive stress stimulus/response on monolayers of the human lung epithelial cell line NCI-H441. Atelectrauma was mimicked through recruitment/derecruitment (RD) of a semi-infinite air bubble to the fluid-occluded micro-channel. We show that a confluent monolayer with a high level of barrier function is nearly impervious to atelectrauma for hundreds of RD events. Nevertheless, barrier function is eventually diminished, and after a critical number of RD insults, the monolayer disintegrates exponentially. Confluent layers with lower initial barrier function are less resilient. These results indicate that the first line of defense from atelectrauma resides with intercellular binding. After disruption, the epithelial layer community protection is diminished and atelectrauma ensues. ECIS may provide a platform for identifying damaging stimuli, ventilation scenarios, or pharmaceuticals that can reduce susceptibility or enhance barrier-function recovery.


Assuntos
COVID-19 , Atelectasia Pulmonar/etiologia , Síndrome do Desconforto Respiratório , Lesão Pulmonar Induzida por Ventilação Mecânica , COVID-19/complicações , COVID-19/fisiopatologia , Impedância Elétrica , Humanos , Pulmão/fisiopatologia , Pneumonia Aspirativa/complicações , Pneumonia Aspirativa/fisiopatologia , Atelectasia Pulmonar/fisiopatologia , Lesão por Inalação de Fumaça/etiologia , Lesão por Inalação de Fumaça/fisiopatologia , Lesão Pulmonar Induzida por Ventilação Mecânica/complicações , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle
3.
Molecules ; 26(12)2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34198596

RESUMO

Staphylococcus aureus (Gram-positive) and Pseudomonas aeruginosa (Gram-negative) bacteria represent major infectious threats in the hospital environment due to their wide distribution, opportunistic behavior, and increasing antibiotic resistance. This study reports on the deposition of polyvinylpyrrolidone/antibiotic/isoflavonoid thin films by the matrix-assisted pulsed laser evaporation (MAPLE) method as anti-adhesion barrier coatings, on biomedical surfaces for improved resistance to microbial colonization. The thin films were characterized by Fourier transform infrared spectroscopy, infrared microscopy, and scanning electron microscopy. In vitro biological assay tests were performed to evaluate the influence of the thin films on the development of biofilms formed by Gram-positive and Gram-negative bacterial strains. In vitro biocompatibility tests were assessed on human endothelial cells examined for up to five days of incubation, via qualitative and quantitative methods. The results of this study revealed that the laser-fabricated coatings are biocompatible and resistant to microbial colonization and biofilm formation, making them successful candidates for biomedical devices and contact surfaces that would otherwise be amenable to contact transmission.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacologia , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Flavonoides/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Biofilmes/crescimento & desenvolvimento , Materiais Revestidos Biocompatíveis/química , Flavonoides/química , Lasers/normas , Testes de Sensibilidade Microbiana/métodos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Staphylococcus aureus/crescimento & desenvolvimento , Propriedades de Superfície
4.
Int J Bioprint ; 6(1): 188, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32782983

RESUMO

Matrix-assisted pulsed laser evaporation (MAPLE) has many benefits over conventional methods (e.g., dip-coating, spin coating, and Langmuir-Blodgett dip-coating) for manufacturing coatings containing pharmacologic agents on medical devices. In particular, the thickness of the coating that is applied to the surface of the medical device can be tightly controlled. In this study, MAPLE was used to deposit rapamycin-polyvinylpyrrolidone (rapamycin-PVP) thin films onto silicon and borosilicate optical glass substrates. Alamar Blue and PicoGreen studies were used to measure the metabolic health and DNA content of L929 mouse fibroblasts as measures of viability and proliferation, respectively. The cells on the MAPLE-deposited rapamycin-PVP surfaces exhibited 70.6% viability and 53.7% proliferation compared to a borosilicate glass control. These data indicate that the antiproliferative properties of rapamycin were maintained after MAPLE deposition.

5.
Int J Bioprint ; 6(1): 211, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32596549

RESUMO

Three-dimensional (3D) printing has been emerging as a new technology for scaffold fabrication to overcome the problems associated with the undesirable microstructure associated with the use of traditional methods. Solvent-based extrusion (SBE) 3D printing is a popular 3D printing method, which enables incorporation of cells during the scaffold printing process. The scaffold can be customized by optimizing the scaffold structure, biomaterial, and cells to mimic the properties of natural tissue. However, several technical challenges prevent SBE 3D printing from translation to clinical use, such as the properties of current biomaterials, the difficulties associated with simultaneous control of multiple biomaterials and cells, and the scaffold-to-scaffold variability of current 3D printed scaffolds. In this review paper, a summary of SBE 3D printing for tissue engineering (TE) is provided. The influences of parameters such as ink biomaterials, ink rheological behavior, cross-linking mechanisms, and printing parameters on scaffold fabrication are considered. The printed scaffold structure, mechanical properties, degradation, and biocompatibility of the scaffolds are summarized. It is believed that a better understanding of the scaffold fabrication process and assessment methods can improve the functionality of SBE-manufactured 3D printed scaffolds.

6.
RSC Adv ; 10(28): 16817-16825, 2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35498836

RESUMO

We describe the instantaneous fabrication of a highly porous three-dimensional (3D) nanostructured manganese oxides-reduced graphitic oxide (MnO x -rGO) electrode by using a pulse-photonic processing technique. Such nanostructures facilitate the movement of ions/electrons and offer an extremely high surface area for the electrode/electrolyte interaction. The electrochemical performance was investigated by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) with 1 M KOH as the electrolyte. The as-prepared thin film electrode exhibits excellent electrochemical performance and an ultra-long lifetime by retaining 90% of the initial capacitance even after 100 000 GCD cycles at constant areal current density of 0.4 mA cm-2. We attribute this excellent lifetime performance to the conductive reduced graphitic oxide, synergistic effects of carbon composite and the metal oxides, and the unique porous nanostructure. Such highly porous morphology also enhances the structural stability of the electrode by buffering the volume changes during the redox processes.

7.
MRS Adv ; 5(56): 2839-2851, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33425377

RESUMO

Antimicrobial surface coatings function as a contact biocide and are extensively used to prevent the growth and transmission of pathogens on environmental surfaces. Currently, scientists and researchers are intensively working to develop antimicrobial, antiviral coating solutions that would efficiently impede/stop the contagion of COVID-19 via surface contamination. Herein we present a flavonoid-based antimicrobial surface coating fabricated by laser processing that has the potential to eradicate COVID-19 contact transmission. Quercetin-containing coatings showed better resistance to microbial colonization than antibiotic-containing ones.

8.
J Cell Biol ; 218(11): 3827-3844, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31530580

RESUMO

In chemotherapy-treated breast cancer, wild-type p53 preferentially induces senescence over apoptosis, resulting in a persisting cell population constituting residual disease that drives relapse and poor patient survival via the senescence-associated secretory phenotype. Understanding the properties of tumor cells that allow survival after chemotherapy treatment is paramount. Using time-lapse and confocal microscopy to observe interactions of cells in treated tumors, we show here that chemotherapy-induced senescent cells frequently engulf both neighboring senescent or nonsenescent tumor cells at a remarkable frequency. Engulfed cells are processed through the lysosome and broken down, and cells that have engulfed others obtain a survival advantage. Gene expression analysis showed a marked up-regulation of conserved macrophage-like program of engulfment in chemotherapy-induced senescent cell lines and tumors. Our data suggest compelling explanations for how senescent cells persist in dormancy, how they manage the metabolically expensive process of cytokine production that drives relapse in those tumors that respond the worst, and a function for their expanded lysosomal compartment.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Senescência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Células MCF-7 , Camundongos , Células Tumorais Cultivadas
9.
PLoS One ; 12(8): e0177802, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28771473

RESUMO

Triple negative breast cancers (TNBCs) have high recurrence and metastasis rates. Acquisition of a mesenchymal morphology and phenotype in addition to driving migration is a consequential process that promotes metastasis. Although some kinases are known to regulate a mesenchymal phenotype, the role for a substantial portion of the human kinome remains uncharacterized. Here we evaluated the Published Kinase Inhibitor Set (PKIS) and screened a panel of TNBC cell lines to evaluate the compounds' effects on a mesenchymal phenotype. Our screen identified 36 hits representative of twelve kinase inhibitor chemotypes based on reversal of the mesenchymal cell morphology, which was then prioritized to twelve compounds based on gene expression and migratory behavior analyses. We selected the most active compound and confirmed mesenchymal reversal on transcript and protein levels with qRT-PCR and Western Blot. Finally, we utilized a kinase array to identify candidate kinases responsible for the EMT reversal. This investigation shows the novel application to identify previously unrecognized kinase pathways and targets in acquisition of a mesenchymal TNBC phenotype that warrant further investigation. Future studies will examine specific roles of the kinases in mechanisms responsible for acquisition of the mesenchymal and/or migratory phenotype.


Assuntos
Terapia de Alvo Molecular , Inibidores de Proteínas Quinases/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Transdiferenciação Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Humanos , Mesoderma/efeitos dos fármacos , Mesoderma/patologia , Camundongos , Fenótipo , Inibidores de Proteínas Quinases/uso terapêutico , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/uso terapêutico , Neoplasias de Mama Triplo Negativas/enzimologia , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Biomicrofluidics ; 11(3): 034120, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28670353

RESUMO

Laser-induced forward transfer has been a promising orifice-free bioprinting technique for the direct writing of three-dimensional cellular constructs from cell-laden bioinks. In order to optimize the printing performance, the effects of living cells on the bioink printability must be carefully investigated in terms of the ability to generate well-defined jets during the jet/droplet formation process as well as well-defined printed droplets on a receiving substrate during the jet/droplet deposition process. In this study, a time-resolved imaging approach has been implemented to study the jet/droplet formation and deposition processes when printing cell-free and cell-laden bioinks under different laser fluences. It is found that the jetting behavior changes from no material transferring to well-defined jetting with or without an initial bulgy shape to jetting with a bulgy shape/pluming/splashing as the laser fluence increases. Under desirable well-defined jetting, two impingement-based deposition and printing types are identified: droplet-impingement printing and jet-impingement printing with multiple breakups. Compared with cell-free bioink printing, the transfer threshold of the cell-laden bioink is higher while the jet velocity, jet breakup length, and printed droplet size are lower, shorter, and smaller, respectively. The addition of living cells transforms the printing type from jet-impingement printing with multiple breakups to droplet-impingement printing. During the printing of cell-laden bioinks, two non-ideal jetting behaviors, a non-straight jet with a non-straight trajectory and a straight jet with a non-straight trajectory, are identified mainly due to the local nonuniformity and nonhomogeneity of cell-laden bioinks.

11.
Biofabrication ; 9(2): 024103, 2017 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-28597844

RESUMO

Laser-induced forward transfer printing, also commonly known as laser printing, has been widely implemented for three-dimensional bioprinting due to its unique orifice-free nature during printing. However, the printing quality has the potential to be further improved for various laser bioprinting applications. The objectives of this study are to investigate the feasibility of using gelatin as an energy absorbing layer (EAL) material for laser bioprinting and its effects on the quality of printed constructs, bioink printability, and post-printing cell viability and process-induced DNA damage. The gelatin EAL is applied between the quartz support and the coating of build material, which is to be printed. Printing quality can be improved by EAL-assisted laser printing when using various alginate solutions (1%, 2%, and 4%) and cell-laden bioinks (2% alginate and 5 × 106 cells ml-1 in cell culture medium). The required laser fluence is also reduced due to a higher absorption coefficient of gelatin gel, in particular when to achieve the best printing type/quality. The post-printing cell viability is improved by ∼10% and DNA double-strand breaks are reduced by ∼50%. For all the build materials investigated, the gelatin EAL helps reduce the droplet size and average jet velocity.


Assuntos
Bioimpressão/métodos , Gelatina/química , Impressão Tridimensional , Engenharia Tecidual/métodos , Animais , Bioimpressão/instrumentação , Sobrevivência Celular/fisiologia , Dano ao DNA , Desenho de Equipamento , Lasers , Camundongos , Células NIH 3T3 , Engenharia Tecidual/instrumentação
12.
Biofabrication ; 9(2): 025013, 2017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28382922

RESUMO

Epithelial-adipose interaction is an integral step in breast cancer cell invasion and progression towards lethal metastatic disease. Understanding the physiological contribution of obesity, a major contributor to breast cancer risk and negative prognosis in post-menopausal patients, on cancer cell invasion requires detailed co-culture constructs that reflect mammary microarchitecture. Using laser direct-write, a laser-based CAD/CAM bioprinting technique, we have demonstrated the ability to construct breast cancer cell-laden hydrogel microbeads into spatially defined patterns in hydrogel matrices containing differentiated adipocytes. Z-stack imaging confirmed the three-dimensional nature of the constructs, as well as incorporation of cancer cell-laden microbeads into the adipose matrix. Preliminary data was gathered to support the construct as a potential model for breast cancer cell invasion into adipose tissue. MCF-7 and MDA-MB-231 breast cancer cell invasion was tracked over 2 weeks in an optically transparent hydrogel scaffold in the presence of differentiated adipocytes obtained from normal weight or obese patient tissue. Our model successfully integrates adipocytes and gives us the potential to study cellular and tissue-level interactions towards the early detection of cancer cell invasion into adipose tissue.


Assuntos
Adipócitos/citologia , Biomimética , Lasers , Modelos Biológicos , Alicerces Teciduais/química , Adipócitos/metabolismo , Alginatos/química , Bioimpressão , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Técnicas de Cocultura , Colágeno/química , Desenho Assistido por Computador , Transição Epitelial-Mesenquimal , Feminino , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Humanos , Hidrogéis/química , Células MCF-7 , Microscopia Eletrônica de Varredura
13.
Int J Bioprint ; 3(2): 004, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-33094188

RESUMO

Transdermal delivery of amphotericin B, a pharmacological agent with activity against fungi and parasitic protozoa, is a challenge since amphotericin B exhibits poor solubility in aqueous solutions at physiologic pH values. In this study, we have used a laser-based printing approach known as matrix-assisted pulsed laser evaporation to print amphotericin B on the surfaces of polyglycolic acid microneedles that were prepared using a combination of injection molding and drawing lithography. In a modified agar disk diffusion assay, the amphotericin B-loaded microneedles showed concentration-dependent activity against the yeast Candida albicans. The results of this study suggest that matrix-assisted pulsed laser evaporation may be used to print amphotericin B and other drugs that have complex solubility issues on the surfaces of microneedles.

14.
Int J Bioprint ; 3(2): 006, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-33094190

RESUMO

Laser direct-write (LDW) bioprinting methods offer a diverse set of tools to design experiments, fabricate tissue constructs and to cellular microenvironments all in a CAD/CAM manner. To date, we have just scratched the surface of the system's potential and for LDW to be utilized to its fullest, there are many distinct hardware and software components that must be integrated and communicate seamlessly. In this perspective article, we detail the development of novel graphical user interface (GUI) software to improve LDW capability and functionality. The main modules in the control software correspond to cell transfer, microbead fabrication, and micromachining. The modules make the control of each of these features, and the management of printing programs that utilize one or more features, to be facile. The software also addresses problems related to construct scale-up, print speed, experimental conditions, and management of sensor data. The control software and possibilities for integrated sensor data are presented.

15.
J Cell Physiol ; 231(11): 2333-8, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26923437

RESUMO

Investigation into the mechanisms driving cancer cell behavior and the subsequent development of novel targeted therapeutics requires comprehensive experimental models that mimic the complexity of the tumor microenvironment. Recently, our laboratories have combined a novel tissue culture model and laser direct-write, a form of bioprinting, to spatially position single or clustered cancer cells onto ex vivo microvascular networks containing blood vessels, lymphatic vessels, and interstitial cell populations. Herein, we highlight this new model as a tool for quantifying cancer cell motility and effects on angiogenesis and lymphangiogenesis in an intact network that matches the complexity of a real tissue. Application of our proposed methodology offers an innovative ex vivo tissue perspective for evaluating the effects of gene expression and targeted molecular therapies on cancer cell migration and invasion. J. Cell. Physiol. 231: 2333-2338, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Movimento Celular , Lasers , Modelos Biológicos , Neoplasias/patologia , Especificidade de Órgãos , Animais , Bioimpressão , Humanos , Ratos , Imagem com Lapso de Tempo
16.
Biofabrication ; 7(4): 045011, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26693735

RESUMO

Laser printing is an orifice-free printing approach and has been investigated for the printing of two-dimensional patterns and simple three-dimensional (3D) constructs. To demonstrate the potential of laser printing as an effective bioprinting technique, both straight and Y-shaped tubes have been freeform printed using two different bioinks: 8% alginate solution and 2% alginate-based mouse fibroblast suspension. It has been demonstrated that 3D cellular tubes, including constructs with bifurcated overhang structures, can be adequately fabricated under optimal printing conditions. The post-printing cell viabilities immediately after printing as well as after 24 h incubation are above 60% for printed straight and Y-shaped fibroblast tubes. During fabrication, overhang and spanning structures can be printed using a dual-purpose crosslinking solution, which also functions as a support material. The advancement distance of gelation reaction front after a cycle time of the receiving platform downward motion should be estimated for experimental planning. The optimal downward movement step size of receiving platform should be chosen to be equal to the height of ungelled portion of a previously printed layer.


Assuntos
Alginatos/química , Lasers , Impressão Tridimensional , Animais , Sobrevivência Celular , Géis , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Processamento de Imagem Assistida por Computador , Camundongos , Células NIH 3T3 , Alicerces Teciduais/química
17.
Int J Mol Sci ; 16(10): 24417-50, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26501258

RESUMO

Increasing biomedical applications of iron oxide nanoparticles (IONPs) in academic and commercial settings have alarmed the scientific community about the safety and assessment of toxicity profiles of IONPs. The great amount of diversity found in the cytotoxic measurements of IONPs points toward the necessity of careful characterization and quantification of IONPs. The present document discusses the major developments related to in vitro and in vivo toxicity assessment of IONPs and its relationship with the physicochemical parameters of IONPs. Major discussion is included on the current spectrophotometric and imaging based techniques used for quantifying, and studying the clearance and biodistribution of IONPs. Several invasive and non-invasive quantification techniques along with the pitfalls are discussed in detail. Finally, critical guidelines are provided to optimize the design of IONPs to minimize the toxicity.


Assuntos
Compostos Férricos/metabolismo , Compostos Férricos/toxicidade , Nanopartículas Metálicas/toxicidade , Animais , Morte Celular/efeitos dos fármacos , Humanos
18.
Integr Biol (Camb) ; 7(9): 1068-78, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26190039

RESUMO

While cancer cell invasion and metastasis are dependent on cancer cell-stroma, cancer cell-blood vessel, and cancer cell-lymphatic vessel interactions, our understanding of these interactions remain largely unknown. A need exists for physiologically-relevant models that more closely mimic the complexity of cancer cell dynamics in a real tissue environment. The objective of this study was to combine laser-based cell printing and tissue culture methods to create a novel ex vivo model in which cancer cell dynamics can be tracked during angiogenesis in an intact microvascular network. Laser direct-write (LDW) was utilized to reproducibly deposit breast cancer cells (MDA-MB-231 and MCF-7) and fibroblasts into spatially-defined patterns on cultured rat mesenteric tissues. In addition, heterogeneous patterns containing co-printed MDA-MB-231/fibroblasts or MDA-MB-231/MCF-7 cells were generated for fibroblast-directed and collective cell invasion models. Printed cells remained viable and the cells retained the ability to proliferate in serum-rich media conditions. Over a culture period of five days, time-lapse imaging confirmed fibroblast and MDA-MB-231 cell migration within the microvascular networks. Confocal microscopy indicated that printed MDA-MB-231 cells infiltrated the tissue thickness and were capable of interacting with endothelial cells. Angiogenic network growth in tissue areas containing printed cancer cells was characterized by significantly increased capillary sprouting compared to control tissue areas containing no printed cells. Our results establish an innovative ex vivo experimental platform that enables time-lapse evaluation of cancer cell dynamics during angiogenesis within a real microvascular network scenario.


Assuntos
Separação Celular/instrumentação , Microvasos/fisiopatologia , Neoplasias Experimentais/patologia , Neoplasias Experimentais/fisiopatologia , Neovascularização Patológica/patologia , Neovascularização Patológica/fisiopatologia , Animais , Movimento Celular , Separação Celular/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Células MCF-7 , Mesentério/fisiopatologia , Invasividade Neoplásica , Impressão Tridimensional/estatística & dados numéricos , Ratos
19.
ACS Appl Mater Interfaces ; 7(32): 17819-25, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26214655

RESUMO

Polymer-ceramic nanocomposites have been thoroughly investigated previously for high energy storage devices. However, the increase in performance of these nanocomposites has proven to be significantly lower than predicted values. Through surface functionalization of high dielectric constant nanoparticles (NP), the flaws that reduce composite performance can be eliminated to form high energy density composite materials. Functionalization methods utilize high throughput printing and curing techniques (i.e., inkjet printing and xenon flash lamp curing) that are crucial for rapid adoption into industrial production. (Ba,Ca) (Zr,Ti)O3 NPs (50 nm) are synthesized through the solvothermal method and functionalized with alkene terminated methoxysilanes. A thiol-ene monomer ink system, PTD3 [pentaerythritol tetrakis (3-mercaptopropionate) (PEMP, P), 1,3-Diisopropenylbenzene (DPB, D), 2,4,6-Triallyloxy-1,3,5-triazine (TOTZ, T)], is used as a high breakdown polymer matrix. Neat polymer, alkene terminated NP-polymer composites, and hydrophilic, TBAOH functionalized NP-polymer composites were spin coated onto both copper laminated glass slides and printed onto copper substrates in 1 cm(2) patterns for testing. Alkene functionalized NPs increased the breakdown strength by ∼38% compared to the nonfunctionalized NPs. Functionalized NPs increased both the breakdown strength and dielectric constant compared to the neat polymer, increasing the energy density nearly 3-fold from 13.3 to 36.1 J·cm(-3).

20.
Langmuir ; 31(23): 6447-56, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26011320

RESUMO

Matrix-assisted pulsed-laser evaporation direct-write (MAPLE DW) has been successfully implemented as a promising laser printing technology for various fabrication applications, in particular, three-dimensional bioprinting. Since most bioinks used in bioprinting are viscoelastic, it is of importance to understand the jetting dynamics during the laser printing of viscoelastic fluids in order to control and optimize the laser printing performance. In this study, MAPLE DW was implemented to study the jetting dynamics during the laser printing of representative viscoelastic alginate bioinks and evaluate the effects of operating conditions (e.g., laser fluence) and material properties (e.g., alginate concentration) on the jet formation performance. Through a time-resolved imaging approach, it is found that when the laser fluence increases or the alginate concentration decreases, the jetting behavior changes from no material transferring to well-defined jetting to well-defined jetting with an initial bulgy shape to jetting with a bulgy shape to pluming/splashing. For the desirable well-defined jetting regimes, as the laser fluence increases, the jet velocity and breakup length increase while the breakup time and primary droplet size decrease. As the alginate concentration increases, the jet velocity and breakup length decrease while the breakup time and primary droplet size increase. In addition, Ohnesorge, elasto-capillary, and Weber number based phase diagrams are presented to better appreciate the dependence of jetting regimes on the laser fluence and alginate concentration.


Assuntos
Alginatos/química , Bioimpressão/métodos , Impressão/métodos , Substâncias Viscoelásticas/química , Materiais Biocompatíveis , Bioimpressão/instrumentação , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Humanos , Tinta , Lasers , Impressão/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA