Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Diagnostics (Basel) ; 13(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37958202

RESUMO

Next-generation sequencing (NGS) methods have been introduced for immunoglobulin (IG)/T-cell receptor (TR) gene rearrangement analysis in acute lymphoblastic leukemia (ALL) and lymphoma (LBL). These methods likely constitute faster and more sensitive approaches to analyze heterogenous cases of ALL/LBL, yet it is not known whether gene rearrangements constituting low percentages of the total sequence reads represent minor subpopulations of malignant cells or background IG/TR gene rearrangements in normal B-and T-cells. In a comparison of eight cases of B-cell precursor ALL (BCP-ALL) using both the EuroClonality NGS method and the IdentiClone multiplex-PCR/gene-scanning method, the NGS method identified between 29% and 139% more markers than the gene-scanning method, depending on whether the NGS data analysis used a threshold of 5% or 1%, respectively. As an alternative to using low thresholds, we show that IG/TR gene rearrangements in subpopulations of cancer cells can be discriminated from background IG/TR gene rearrangements in normal B-and T-cells through a combination of flow cytometry cell sorting and multiple displacement amplification (MDA)-based whole genome amplification (WGA) prior to the NGS. Using this approach to investigate the clonal evolution in a BCP-ALL patient with double relapse, clonal TR rearrangements were found in sorted leukemic cells at the time of second relapse that could be identified at the time of diagnosis, below 1% of the total sequence reads. These data emphasize that caution should be exerted when interpreting rare sequences in NGS experiments and show the advantage of employing the flow sorting of malignant cell populations in NGS clonality assessments.

2.
Cancers (Basel) ; 15(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37173970

RESUMO

Acute lymphoblastic leukemia (ALL) disseminates with high prevalence to the central nervous system (CNS) in a process resembling aspects of the CNS surveillance of normal immune cells as well as aspects of brain metastasis from solid cancers. Importantly, inside the CNS, the ALL blasts are typically confined within the cerebrospinal fluid (CSF)-filled cavities of the subarachnoid space, which they use as a sanctuary protected from both chemotherapy and immune cells. At present, high cumulative doses of intrathecal chemotherapy are administered to patients, but this is associated with neurotoxicity and CNS relapse still occurs. Thus, it is imperative to identify markers and novel therapy targets specific to CNS ALL. Integrins represent a family of adhesion molecules involved in cell-cell and cell-matrix interactions, implicated in the adhesion and migration of metastatic cancer cells, normal immune cells, and leukemic blasts. The ability of integrins to also facilitate cell-adhesion mediated drug resistance, combined with recent discoveries of integrin-dependent routes of leukemic cells into the CNS, have sparked a renewed interest in integrins as markers and therapeutic targets in CNS leukemia. Here, we review the roles of integrins in CNS surveillance by normal lymphocytes, dissemination to the CNS by ALL cells, and brain metastasis from solid cancers. Furthermore, we discuss whether ALL dissemination to the CNS abides by known hallmarks of metastasis, and the potential roles of integrins in this context.

3.
Mol Oncol ; 16(10): 2015-2030, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35271751

RESUMO

Minimal residual disease (MRD) constitutes the most important prognostic factor in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Flow cytometry is widely used in MRD assessment, yet little is known regarding the effect of different immunophenotypic subsets on outcome. In this study of 200 BCP-ALL patients, we found that a CD34-positive, CD38 dim-positive, nTdT dim-positive immunophenotype on the leukemic blasts was associated with poor induction therapy response and predicted an MRD level at the end of induction therapy (EOI) of ≥ 0.001. CD34 expression was strongly and positively associated with EOI MRD, whereas CD34-negative patients had a low relapse risk. Further, CD34 expression increased from diagnosis to relapse. CD34 is a stemness-associated cell-surface molecule, possibly involved in cell adhesion/migration or survival. Accordingly, genes associated with stemness were overrepresented among the most upregulated genes in CD34-positive leukemias, and protein-protein interaction networks showed an overrepresentation of genes associated with cell migration, cell adhesion, and negative regulation of apoptosis. The present work is the first to demonstrate a CD34-negative immunophenotype as a good prognostic factor in ALL, whereas high CD34 expression is associated with poor therapy response and an altered gene expression profile reminiscent of migrating cancer stem-like cells.


Assuntos
Linfoma de Burkitt , Leucemia-Linfoma Linfoblástico de Células Precursoras , Antígenos CD34 , Moléculas de Adesão Celular/genética , Movimento Celular/genética , Citometria de Fluxo , Humanos , Imunofenotipagem , Quimioterapia de Indução , Neoplasia Residual/diagnóstico , Neoplasia Residual/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Recidiva
4.
Front Oncol ; 10: 775, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32528884

RESUMO

Acute Lymphoblastic Leukemia (ALL) is the most common cancer in childhood. Despite a significantly improved prognosis over the last decade with a 5-years survival rate of ~90%, treatment-related morbidity remains substantial and relapse occurs in 10-15% of patients (1). The most common site of relapse is the bone marrow, but early colonization and subsequent reoccurrence of the disease in the central nervous system (CNS) also occurs. Integrins are a family of cell surface molecules with a longstanding history in cancer cell adherence, migration and metastasis. In chronic lymphoblastic leukemia (CLL), the VLA-4 integrin has been acknowledged as a prognostic marker and mounting evidence indicates that this and other integrins may also play a role in acute leukemia, including ALL. Importantly, integrins engage in anti-apoptotic signaling when binding extracellular molecules that are enriched in the bone marrow and CNS microenvironments. Here, we review the current evidence for a role of integrins in the adherence of ALL cells within the bone marrow and their colonization of the CNS, with particular emphasis on mechanisms adding to cancer cell survival and chemoresistance.

6.
Sci Rep ; 8(1): 8957, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29895898

RESUMO

NCAM1 and NCAM2 have ectodomains consisting of 5 Ig domains followed by 2 membrane-proximal FnIII domains. In this study we investigate and compare the structures and functions of these FnIII domains. The NCAM1 and -2 FnIII2 domains both contain a Walker A motif. In NCAM1 binding of ATP to this motif interferes with NCAM1 binding to FGFR. We obtained a structural model of the NCAM2 FnIII2 domain by NMR spectroscopy, and by titration with an ATP analogue we show that the NCAM2 Walker A motif does not bind ATP. Small angle X-ray scattering (SAXS) data revealed that the NCAM2 FnIII1-2 double domain exhibits a very low degree of flexibility. Moreover, recombinant NCAM2 FnIII domains bind FGFR in vitro, and the FnIII1-2 double domain induces neurite outgrowth in a concentration-dependent manner through activation of FGFR. Several synthetic NCAM1-derived peptides induce neurite outgrowth via FGFR. Only 2 of 5 peptides derived from similar regions in NCAM2 induce neurite outgrowth, but the most potent of these peptides stimulates neurite outgrowth through FGFR-dependent activation of the Ras-MAPK pathway. These results reveal that the NCAM2 FnIII domains form a rigid structure that binds and activates FGFR in a manner related to, but different from NCAM1.


Assuntos
Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Molécula L1 de Adesão de Célula Nervosa , Neuritos/metabolismo , Peptídeos , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Motivos de Aminoácidos , Animais , Humanos , Molécula L1 de Adesão de Célula Nervosa/química , Molécula L1 de Adesão de Célula Nervosa/farmacologia , Moléculas de Adesão de Célula Nervosa , Peptídeos/química , Peptídeos/farmacologia , Domínios Proteicos , Ratos , Ratos Wistar
7.
PLoS One ; 13(3): e0192728, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29522534

RESUMO

BACKGROUND AND AIMS: Hepatic cholesterol deposition drives inflammation and fibrosis in non-alcoholic steatohepatitis (NASH). The Niemann-Pick type C2 (NPC2) protein plays an important role in regulating intracellular cholesterol trafficking and homeostasis. We hypothesized that intravenous NPC2 supplementation reduces cholesterol accumulation, hepatic inflammation and fibrogenesis in a nutritional NASH rat model. METHODS: Rats were fed a high-fat, high-cholesterol (HFHC) diet for four weeks resulting in moderately severe NASH. Animals were treated with intravenous NPC2 or placebo twice weekly for either the last two weeks or the entire four weeks. End-points were liver/body- and spleen/body weight ratios, histopathological NASH scores, fibrosis, serum liver enzymes, cholesterol, lipoproteins, cytokines, and quantitative polymerase chain reaction derived hepatic gene expression related to cholesterol metabolism, inflammation, and fibrosis. RESULTS: HFHC rats developed hepatomegaly, non-fibrotic NASH histopathology, elevated liver enzymes, serum cholesterol, and pro-inflammatory cytokines. Their sterol regulatory element binding factor 2 (SREBF2) and low-density lipoprotein receptor (LDL-R) mRNAs were down-regulated compared with rats on standard chow. NPC2 did not improve liver weight, histopathology, levels of serum liver enzymes or pro-inflammatory tumor necrosis factor-α (TNFα), Interleukin (IL)-6, or IL-1ß in HFHC rats. Two weeks of NPC2 treatment lowered hepatic TNFα and COL1A1 mRNA expression. However, this effect was ultimately reversed following additional two weeks of treatment. Four weeks NPC2 treatment of rats raised ATP-binding cassette A1 (ABCA1) and low-density lipoprotein receptor (LDLR) mRNAs in the liver, concurrent with a strong tendency towards higher serum high-density lipoprotein (HDL). Furthermore, the peroxisome proliferator activated receptor-É£ (PPARG) gene expression was reduced. CONCLUSIONS: NPC2 proved inefficient at modifying robust hepatic NASH end-points in a HFHC NASH model. Nonetheless, our data suggest that hepatic ABCA1 expression and reverse cholesterol transport were upregulated by NPC2 treatment, thus presenting putative therapeutic effects in diseases associated with deregulated lipid metabolism.


Assuntos
Proteínas de Transporte/farmacologia , Colesterol/metabolismo , Colágeno Tipo I/metabolismo , Glicoproteínas/farmacologia , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , PPAR gama/metabolismo , Animais , Transporte Biológico Ativo/efeitos dos fármacos , Cadeia alfa 1 do Colágeno Tipo I , Citocinas/metabolismo , Gorduras na Dieta/efeitos adversos , Gorduras na Dieta/farmacologia , Modelos Animais de Doenças , Feminino , Peptídeos e Proteínas de Sinalização Intracelular , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/patologia , Ratos , Ratos Wistar , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo
8.
Mol Neurobiol ; 53(1): 584-594, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25502296

RESUMO

The CD200 ligand is expressed by a variety of cell types, including vascular endothelia, kidney glomeruli, some subsets of T and B cells, and neurons in the brain and periphery. In contrast, the receptor of CD200, CD200R, has a limited expression pattern and is mainly expressed by cells of myeloid origin. A recently solved crystal structure of the CD200-CD200R ectodomain complex suggests involvement of the first immunoglobulin (Ig)-like modules in ligand-receptor binding, resulting in the inhibition of myeloid cell function. In the central nervous system, CD200 has been implicated in the suppression of microglia activation. We for the first time demonstrated that CD200 can interact with and transduce signaling through activation of the fibroblast growth factor receptor (FGFR), thereby inducing neuritogenesis and promoting neuronal survival in primary neurons. CD200-induced FGFR phosphorylation was abrogated by CD200R, whereas FGF2-induced FGFR activation was inhibited by CD200. We also identified a sequence motif located in the first Ig-like module of CD200, likely representing the minimal CD200 binding site for FGFR. The FGFR binding motif overlaps with the CD200R binding site, suggesting that they can compete for CD200 binding in cells that express both receptors. We propose that CD200 in neurons functions as a ligand of FGFR.


Assuntos
Antígenos CD/metabolismo , Fatores Imunológicos/metabolismo , Fatores de Crescimento Neural/metabolismo , Neurônios/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Sequência de Aminoácidos , Animais , Antígenos CD/farmacologia , Células Cultivadas , Relação Dose-Resposta a Droga , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Fatores Imunológicos/farmacologia , Dados de Sequência Molecular , Fatores de Crescimento Neural/genética , Neurônios/efeitos dos fármacos , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Ratos , Ratos Wistar , Receptores de Fatores de Crescimento de Fibroblastos/agonistas , Receptores de Fatores de Crescimento de Fibroblastos/genética
9.
Mol Oncol ; 9(3): 601-16, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25435281

RESUMO

Both Myc and Ras oncogenes impact cellular metabolism, deregulate redox homeostasis and trigger DNA replication stress (RS) that compromises genomic integrity. However, how are such oncogene-induced effects evoked and temporally related, to what extent are these kinetic parameters shared by Myc and Ras, and how are these cellular changes linked with oncogene-induced cellular senescence in different cell context(s) remain poorly understood. Here, we addressed the above-mentioned open questions by multifaceted comparative analyses of human cellular models with inducible expression of c-Myc and H-RasV12 (Ras), two commonly deregulated oncoproteins operating in a functionally connected signaling network. Our study of DNA replication parameters using the DNA fiber approach and time-course assessment of perturbations in glycolytic flux, oxygen consumption and production of reactive oxygen species (ROS) revealed the following results. First, overabundance of nuclear Myc triggered RS promptly, already after one day of Myc induction, causing slow replication fork progression and fork asymmetry, even before any metabolic changes occurred. In contrast, Ras overexpression initially induced a burst of cell proliferation and increased the speed of replication fork progression. However, after several days of induction Ras caused bioenergetic metabolic changes that correlated with slower DNA replication fork progression and the ensuing cell cycle arrest, gradually leading to senescence. Second, the observed oncogene-induced RS and metabolic alterations were cell-type/context dependent, as shown by comparative analyses of normal human BJ fibroblasts versus U2-OS sarcoma cells. Third, the energy metabolic reprogramming triggered by Ras was more robust compared to impact of Myc. Fourth, the detected oncogene-induced oxidative stress was due to ROS (superoxide) of non-mitochondrial origin and mitochondrial OXPHOS was reduced (Crabtree effect). Overall, our study provides novel insights into oncogene-evoked metabolic reprogramming, replication and oxidative stress, with implications for mechanisms of tumorigenesis and potential targeting of oncogene addiction.


Assuntos
Replicação do DNA/genética , Metabolismo Energético/genética , Genes ras , Estresse Oxidativo/genética , Proteínas Proto-Oncogênicas c-myc/genética , Estresse Fisiológico/genética , Morte Celular , Linhagem Celular Tumoral , Proliferação de Células , Dano ao DNA , Humanos , Mitocôndrias/metabolismo
10.
Biochim Biophys Acta ; 1847(3): 328-342, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25482261

RESUMO

Polyethylenimines (PEIs) are among the most efficient polycationic non-viral transfectants. PEI architecture and size not only modulate transfection efficiency, but also cytotoxicity. However, the underlying mechanisms of PEI-induced multifaceted cell damage and death are largely unknown. Here, we demonstrate that the central mechanisms of PEI architecture- and size-dependent perturbations of integrated cellular metabolomics involve destabilization of plasma membrane and mitochondrial membranes with consequences on mitochondrial oxidative phosphorylation (OXPHOS), glycolytic flux and redox homeostasis that ultimately modulate cell death. In comparison to linear PEI, the branched architectures induced greater plasma membrane destabilization and were more detrimental to glycolytic activity and OXPHOS capacity as well as being a more potent inhibitor of the cytochrome c oxidase. Accordingly, the branched architectures caused a greater lactate dehydrogenase (LDH) and ATP depletion, activated AMP kinase (AMPK) and disturbed redox homeostasis through diminished availability of nicotinamide adenine dinucleotide phosphate (NADPH), reduced antioxidant capacity of glutathione (GSH) and increased burden of reactive oxygen species (ROS). The differences in metabolic and redox imprints were further reflected in the transfection performance of the polycations, but co-treatment with the GSH precursor N-acetyl-cysteine (NAC) counteracted redox dysregulation and increased the number of viable transfected cells. Integrated biomembrane integrity and metabolomic analysis provides a rapid approach for mechanistic understanding of multifactorial polycation-mediated cytotoxicity, and could form the basis for combinatorial throughput platforms for improved design and selection of safer polymeric vectors.


Assuntos
Membrana Celular/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Membranas Mitocondriais/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Polietilenoimina/toxicidade , Transfecção/métodos , Trifosfato de Adenosina/metabolismo , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Linhagem Celular , Membrana Celular/metabolismo , Respiração Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Glutationa/metabolismo , Homeostase , Humanos , Cinética , Membranas Mitocondriais/metabolismo , Estrutura Molecular , Peso Molecular , Oxirredução , Consumo de Oxigênio/efeitos dos fármacos , Polietilenoimina/química , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade
11.
Nat Commun ; 5: 5348, 2014 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-25370744

RESUMO

ARF is a small, highly basic protein that can be induced by oncogenic stimuli and exerts growth-inhibitory and tumour-suppressive activities through the activation of p53. Here we show that, in human melanocytes, ARF is cytoplasmic, constitutively expressed, and required for maintaining low steady-state levels of superoxide under conditions of mitochondrial dysfunction. This mitochondrial activity of ARF is independent of its known autophagic and p53-dependent functions, and involves the evolutionarily conserved acidic motif GHDDGQ, which exhibits weak homology to BCL-2 homology 3 (BH3) domains and mediates interaction with BCL-xL--an important regulator of mitochondrial redox homeostasis. Melanoma-predisposing CDKN2A germline mutations, which affect conserved glycine and aspartate residues within the GHDDGQ motif, impair the ability of ARF to control superoxide production and suppress growth of melanoma cells in vivo. These results reveal an important cell-protective function of ARF that links mitochondrial dysfunction and susceptibility to melanoma.


Assuntos
Melanócitos/metabolismo , Melanoma/genética , Doenças Mitocondriais/metabolismo , Superóxidos/metabolismo , Proteína Supressora de Tumor p14ARF/metabolismo , Motivos de Aminoácidos , Respiração Celular , Células Cultivadas , Predisposição Genética para Doença , Humanos , Proteína bcl-X/metabolismo
13.
Mol Cancer Res ; 11(10): 1166-78, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23851445

RESUMO

UNLABELLED: Melanoma genomes contain thousands of alterations including: mutations, copy number alterations, structural aberrations, and methylation changes. The bulk of this variation is stochastic and functionally neutral, with only a small minority representing "drivers" that contribute to the genesis and maintenance of tumors. Drivers are often directly or inversely correlated across tumors, reflecting the molecular and regulatory signaling pathways in which they operate. Here, a profile of genetic and epigenetic drivers in 110 human melanoma cell lines was generated and searched for non-random distribution patterns. Statistically significant mutual exclusivity was revealed among components of each of the p16(INK4A)-CDK4-RB, RAS-RAF-MEK-ERK and PI3K-AKT signaling pathways. In addition, an inverse correlation was observed between promoter hypermethylation of retinoic acid receptor ß (RARB) and CDKN2A alterations affecting p14(ARF) (P < 0.0001), suggesting a functional link between RARß signaling and the melanoma-suppressive activities of p14(ARF). Mechanistically, all-trans retinoic acid (ATRA) treatment increased the expression of p14(ARF) in primary human melanocytes and the steady-state levels of p14(ARF) in these cells were shown to be regulated via RARß. Furthermore, the ability of ATRA to induce senescence is reduced in p14(ARF)-depleted melanocytes, and we provide proof-of-concept that ATRA can induce irreversible growth arrest in melanoma cells with an intact RARß-p14(ARF) signaling axis, independent of p16(INK4A) and p53 status. IMPLICATIONS: These data highlight the power of mutual exclusivity analysis of cancer drivers to unravel molecular pathways and establish a previously unrecognized cross-talk between RARß and p14(ARF) with potential implications for melanoma treatment.


Assuntos
Perfilação da Expressão Gênica , Melanoma/genética , Receptores do Ácido Retinoico/metabolismo , Transdução de Sinais/genética , Proteína Supressora de Tumor p14ARF/metabolismo , Linhagem Celular Tumoral , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Humanos , Melanoma/patologia , Receptores do Ácido Retinoico/genética , Tretinoína/farmacologia , Proteína Supressora de Tumor p14ARF/genética
14.
Oncotarget ; 4(4): 584-99, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23603840

RESUMO

Oncogene addiction describes how cancer cells exhibit dependence on single oncogenes to escape apoptosis and senescence. While oncogene addiction constitutes the basis for new cancer treatment strategies targeting individual kinases and pathways activated by oncogenic mutations, the biochemical basis for this addiction is largely unknown. Here we provide evidence for a metabolic rationale behind the addiction to (V600E)BRAF in two malignant melanoma cell lines. Both cell lines display a striking addiction to glycolysis due to underlying dysfunction of oxidative phosphorylation (OXPHOS). Notably, even minor reductions in glycolytic activity lead to increased OXPHOS activity (reversed Warburg effect), however the mitochondria are unable to sustain ATP production. We show that (V600E)BRAF upholds the activity of glycolysis and therefore the addiction to glycolysis de facto becomes an addiction to (V600E)BRAF. Finally, the senescence response associated with inhibition of (V600E)BRAF is rescued by overexpression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), providing direct evidence that oncogene addiction rests on a metabolic foundation.


Assuntos
Glicólise/genética , Melanoma/genética , Melanoma/metabolismo , Fosforilação Oxidativa , Proteínas Proto-Oncogênicas B-raf/genética , Apoptose/genética , Western Blotting , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Oncogenes , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/fisiologia , Transfecção
15.
J Biol Chem ; 287(44): 37420-33, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-22955284

RESUMO

Nectins belong to a family of immunoglobulin (Ig)-like cell-adhesion molecules comprising four members, nectin-1 through nectin-4. Nectins are involved in formation of the mechanical adhesive puncta adherentia junctions of synapses. Nectins share the same overall structural topology with an extracellular region containing three Ig modules, a transmembrane region, and a cytoplasmic region. In nectin-1, the first and second Ig module in the extracellular region are necessary for the trans-interaction with nectin-3 and formation of cis-dimers, respectively. The function of the third Ig module of nectin-1 remains unknown. We here report the structure in solution of the third, membrane-proximal Ig module of mouse nectin-1 (nectin-1 Ig3) solved by means of nuclear magnetic resonance (NMR) spectroscopy. It belongs to the C1 set of the Ig superfamily. Nectin-1 Ig3 was produced as a recombinant protein and induced neurite outgrowth in primary cultures of hippocampal and cerebellar granule neurons, an effect abolished by treatment with the fibroblast growth factor receptor (FGFR) inhibitor SU5402, or by transfection with a dominant-negative FGFR1 construct. We showed by surface plasmon resonance (SPR) analysis that nectin-1 Ig3 directly interacted with various isoforms of FGFR. Nectin-1 Ig3 induced phosphorylation of FGFR1c in the same manner as the whole nectin-1 ectodomain, and promoted survival of cerebellar granule neurons induced to undergo apoptosis. Finally, we constructed a peptide, nectide, by employing in silico modeling of various FGFR ligand-binding sites. Nectide mimicked all the effects of nectin-1 Ig3. We suggest that FGFR is a downstream signaling partner of nectin-1.


Assuntos
Moléculas de Adesão Celular/fisiologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Sequência de Aminoácidos , Animais , Apoptose , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/metabolismo , Sobrevivência Celular , Cristalografia por Raios X , Fator 2 de Crescimento de Fibroblastos/fisiologia , Células HEK293 , Hipocampo/citologia , Humanos , Camundongos , Dados de Sequência Molecular , Nectinas , Neuritos/metabolismo , Neuritos/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Fosforilação , Cultura Primária de Células , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ratos , Ratos Wistar , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/química , Receptores do Fator de Crescimento Derivado de Plaquetas/química , Transdução de Sinais , Ressonância de Plasmônio de Superfície
16.
Neuroreport ; 22(15): 727-32, 2011 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-21876469

RESUMO

The fibroblast growth factor receptor (FGFR) can be activated through direct interactions with various fibroblast growth factors or through a number of cell adhesion molecules, including the neural cell adhesion molecule (NCAM). We produced recombinant proteins comprising the ligand-binding immunoglobulin-like modules 2 and 3 of FGFR1b, FGFR1c, FGFR2b, FGFR2c, FGFR3b, FGFR3c, and FGFR4, and found that all FGFR isoforms, except for FGFR4, interacted with NCAM. The binding affinity of NCAM-FGFR interactions was considerably higher for splice variant 'b' than for splice variant 'c'. We suggest that the expression pattern of various FGFR isoforms determines the cell context-specific effects of NCAM signaling through FGFR.


Assuntos
Moléculas de Adesão de Célula Nervosa/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/fisiologia , Animais , Masculino , Isoformas de Proteínas/metabolismo , Ratos , Ratos Wistar , Proteínas Recombinantes/metabolismo , Ressonância de Plasmônio de Superfície
17.
Eur J Cell Biol ; 89(11): 817-27, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20692716

RESUMO

Neural cell adhesion molecule (NCAM)-mediated cell adhesion results in activation of intracellular signaling cascades that lead to cellular responses such as neurite outgrowth, neuronal survival, and modulation of synaptic activity associated with cognitive processes. The crystal structure of the immunoglobulin (Ig) 1-2-3 fragment of the NCAM ectodomain has revealed novel mechanisms for NCAM homophilic adhesion. The present study addressed the biological significance of the so called dense zipper formation of NCAM. Two peptides, termed dennexinA and dennexinB, were modeled after the contact interfaces between Ig1 and Ig3 and between Ig2 and Ig2, respectively, observed in the crystal structure. Although the two dennexin peptides differed in amino acid sequence, they both modulated cell adhesion, reflected by inhibition of NCAM-mediated neurite outgrowth. Both dennexins also promoted neuronal survival, and the effect of dennexinA was independent of polysialic acid expression. Consistent with the effect of dennexinA on NCAM-mediated adhesion in vitro, the peptide impaired long-term memory retention in rats in the Morris water maze test. Thus, dennexins are novel site-specific pharmacological tools for elucidation of the role of NCAM in a variety of biological processes under normal and pathological conditions.


Assuntos
Aprendizagem em Labirinto/efeitos dos fármacos , Moléculas de Adesão de Célula Nervosa/fisiologia , Neurônios/fisiologia , Fragmentos de Peptídeos/farmacologia , Sequência de Aminoácidos , Animais , Sítios de Ligação , Adesão Celular/efeitos dos fármacos , Adesão Celular/fisiologia , Linhagem Celular , Masculino , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Moléculas de Adesão de Célula Nervosa/química , Moléculas de Adesão de Célula Nervosa/metabolismo , Neuritos/fisiologia , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Transdução de Sinais
18.
J Clin Invest ; 120(8): 2684-98, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20664171

RESUMO

Semaphorin 3E (Sema3E) is a secreted molecule implicated in axonal path finding and inhibition of developmental and postischemic angiogenesis. Sema3E is also highly expressed in metastatic cancer cells, but its mechanistic role in tumor progression was not understood. Here we show that expression of Sema3E and its receptor Plexin D1 correlates with the metastatic progression of human tumors. Consistent with the clinical data, knocking down endogenous expression of either Sema3E or Plexin D1 in human metastatic carcinoma cells hampered their metastatic potential when injected into mice, while tumor growth was not markedly affected. Conversely, overexpression of exogenous Sema3E in cancer cells increased their invasiveness, transendothelial migration, and metastatic spreading, although it inhibited tumor vessel formation, resulting in reduced tumor growth in mice. The proinvasive and metastatic activity of Sema3E in tumor cells was dependent on transactivation of the Plexin D1-associated ErbB2/Neu oncogenic kinase. In sum, Sema3E-Plexin D1 signaling in cancer cells is crucially implicated in their metastatic behavior and may therefore be a promising target for strategies aimed at blocking tumor metastasis.


Assuntos
Moléculas de Adesão Celular Neuronais/fisiologia , Metástase Neoplásica , Semaforinas/fisiologia , Transdução de Sinais/fisiologia , Animais , Células COS , Linhagem Celular Tumoral , Movimento Celular , Chlorocebus aethiops , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Glicoproteínas de Membrana , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Transplante de Neoplasias , Receptor ErbB-2/fisiologia , Semaforinas/análise , Proteínas ras/genética , Proteínas rho de Ligação ao GTP/análise
20.
Science ; 327(5963): 278-9, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20075237
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA