Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
FEMS Microbiol Ecol ; 99(11)2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37796894

RESUMO

Permafrost soils store a substantial part of the global soil carbon and nitrogen. However, global warming causes abrupt erosion and gradual thaw, which make these stocks vulnerable to microbial decomposition into greenhouse gases. Here, we investigated the microbial response to abrupt in situ permafrost thaw. We sequenced the total RNA of a 1 m deep soil core consisting of up to 26 500-year-old permafrost material from an active abrupt erosion site. We analysed the microbial community in the active layer soil, the recently thawed, and the intact permafrost, and found maximum RNA:DNA ratios in recently thawed permafrost indicating a high microbial activity. In thawed permafrost, potentially copiotrophic Burkholderiales and Sphingobacteriales, but also microbiome predators dominated the community. Overall, both thaw-dependent and long-term soil properties significantly correlated with changes in community composition, as did microbiome predator abundance. Bacterial predators were dominated in shallower depths by Myxococcota, while protozoa, especially Cercozoa and Ciliophora, almost tripled in relative abundance in thawed layers. Our findings highlight the ecological importance of a diverse interkingdom and active microbial community highly abundant in abruptly thawing permafrost, as well as predation as potential biological control mechanism.


Assuntos
Microbiota , Pergelissolo , Pergelissolo/microbiologia , Solo , Bactérias/genética , Carbono , RNA , Microbiologia do Solo
3.
Sci Rep ; 13(1): 2828, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36806215

RESUMO

In this study, we hypothesised that the actual development stage (i.e., current age of the ecosystem) is a determining factor for the magnitude of methane production and emissions in young, northern high-latitude peatlands. We demonstrate that the earliest development of peat soil imposes a sink-to-source shift in the greenhouse warming potential of emerging peatlands in response to climate change that holds feedback mechanisms of importance for short-term (< 100 years) climate warming.

4.
Glob Chang Biol ; 29(5): 1267-1281, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36353841

RESUMO

Long-term atmospheric CO2 concentration records have suggested a reduction in the positive effect of warming on high-latitude carbon uptake since the 1990s. A variety of mechanisms have been proposed to explain the reduced net carbon sink of northern ecosystems with increased air temperature, including water stress on vegetation and increased respiration over recent decades. However, the lack of consistent long-term carbon flux and in situ soil moisture data has severely limited our ability to identify the mechanisms responsible for the recent reduced carbon sink strength. In this study, we used a record of nearly 100 site-years of eddy covariance data from 11 continuous permafrost tundra sites distributed across the circumpolar Arctic to test the temperature (expressed as growing degree days, GDD) responses of gross primary production (GPP), net ecosystem exchange (NEE), and ecosystem respiration (ER) at different periods of the summer (early, peak, and late summer) including dominant tundra vegetation classes (graminoids and mosses, and shrubs). We further tested GPP, NEE, and ER relationships with soil moisture and vapor pressure deficit to identify potential moisture limitations on plant productivity and net carbon exchange. Our results show a decrease in GPP with rising GDD during the peak summer (July) for both vegetation classes, and a significant relationship between the peak summer GPP and soil moisture after statistically controlling for GDD in a partial correlation analysis. These results suggest that tundra ecosystems might not benefit from increased temperature as much as suggested by several terrestrial biosphere models, if decreased soil moisture limits the peak summer plant productivity, reducing the ability of these ecosystems to sequester carbon during the summer.


Assuntos
Sequestro de Carbono , Ecossistema , Solo , Dióxido de Carbono/análise , Tundra , Regiões Árticas , Ciclo do Carbono , Plantas , Carbono/análise
5.
Nat Commun ; 13(1): 6379, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36316310

RESUMO

Despite the importance of high-latitude surface energy budgets (SEBs) for land-climate interactions in the rapidly changing Arctic, uncertainties in their prediction persist. Here, we harmonize SEB observations across a network of vegetated and glaciated sites at circumpolar scale (1994-2021). Our variance-partitioning analysis identifies vegetation type as an important predictor for SEB-components during Arctic summer (June-August), compared to other SEB-drivers including climate, latitude and permafrost characteristics. Differences among vegetation types can be of similar magnitude as between vegetation and glacier surfaces and are especially high for summer sensible and latent heat fluxes. The timing of SEB-flux summer-regimes (when daily mean values exceed 0 Wm-2) relative to snow-free and -onset dates varies substantially depending on vegetation type, implying vegetation controls on snow-cover and SEB-flux seasonality. Our results indicate complex shifts in surface energy fluxes with land-cover transitions and a lengthening summer season, and highlight the potential for improving future Earth system models via a refined representation of Arctic vegetation types.


Assuntos
Ecossistema , Pergelissolo , Estações do Ano , Regiões Árticas , Mudança Climática
6.
HardwareX ; 12: e00331, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35795086

RESUMO

Climate change is rapidly altering the Arctic environment. Although long-term environmental observations have been made at a few locations in the Arctic, the incomplete coverage from ground stations is a main limitation to observations in these remote areas. Here we present a wind and sun powered multi-purpose mobile observatory (ARC-MO) that enables near real time measurements of air, ice, land, rivers, and marine parameters in remote off-grid areas. Two test units were constructed and placed in Northeast Greenland where they have collected data from cabled and wireless instruments deployed in the environment since late summer 2021. The two units can communicate locally via WiFi (units placed 25 km apart) and transmit near-real time data globally over satellite. Data are streamed live and accessible from (https://gios.org). The cost of one mobile observatory unit is c. 304.000€. These test units demonstrate the possibility for integrative and automated environmental data collection in remote coastal areas and could serve as models for a proposed global observatory system.

7.
Sci Total Environ ; 846: 157385, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-35870583

RESUMO

The continuous change in observed key indicators such as increasing nitrogen deposition, temperatures and precipitation will have marked but uncertain consequences for the ecosystem carbon (C) sink-source functioning of the Arctic. Here, we use multiple in-situ data streams measured by the Greenland Ecosystem Monitoring programme in tight connection with the Soil-Plant-Atmosphere model and climate projections from the high-resolution HIRHAM5 regional model. We apply this modelling framework with focus on two climatically different tundra sites in Greenland (Zackenberg and Kobbefjord) to assess how sensitive the net C uptake will expectedly be under warmer and wetter conditions across the 21st century and pin down the relative contribution to the overall C sink strength from climate versus plant trait variability. Our results suggest that temperatures (5-7.7 °C), total precipitation (19-110 %) and vapour pressure deficit will increase (32-36 %), while shortwave radiation will decline (6-9 %) at both sites by 2100 under the RCP8.5 scenario. Such a combined effect will, on average, intensify the net C uptake by 9-10 g C m-2 year-1 at both sites towards the end of 2100, but Zackenberg is expected to have more than twice the C sink strength capacity of Kobbefjord. Our sensitivity analysis not only reveals that plant traits are the most sensitive parameters controlling the net C exchange in both sites at the beginning and end of the century, but also that the projected increase in the net C uptake will likely be similarly influenced by future changes in climate and existing local nutrient conditions. A series of experiments forcing realistic changes in plant nitrogen status at both sites corroborates this hypothesis. This work proves the unique synergy between monitoring data and numerical models to assist robust model calibration/validation and narrow uncertainty ranges and ultimately produce more reliable C cycle projections in understudied regions such as Greenland.


Assuntos
Carbono , Ecossistema , Regiões Árticas , Carbono/análise , Mudança Climática , Groenlândia , Nitrogênio/análise , Tundra
8.
Front Microbiol ; 13: 787146, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401488

RESUMO

Northern permafrost soils store more than half of the global soil carbon. Frozen for at least two consecutive years, but often for millennia, permafrost temperatures have increased drastically in the last decades. The resulting thermal erosion leads not only to gradual thaw, resulting in an increase of seasonally thawing soil thickness, but also to abrupt thaw events, such as sudden collapses of the soil surface. These could affect 20% of the permafrost zone and half of its organic carbon, increasing accessibility for deeper rooting vegetation and microbial decomposition into greenhouse gases. Knowledge gaps include the impact of permafrost thaw on the soil microfauna as well as key taxa to change the microbial mineralization of ancient permafrost carbon stocks during erosion. Here, we present the first sequencing study of an abrupt permafrost erosion microbiome in Northeast Greenland, where a thermal erosion gully collapsed in the summer of 2018, leading to the thawing of 26,500-year-old permafrost material. We investigated which soil parameters (pH, soil carbon content, age and moisture, organic and mineral horizons, and permafrost layers) most significantly drove changes of taxonomic diversity and the abundance of soil microorganisms in two consecutive years of intense erosion. Sequencing of the prokaryotic 16S rRNA and fungal ITS2 gene regions at finely scaled depth increments revealed decreasing alpha diversity with depth, soil age, and pH. The most significant drivers of variation were found in the soil age, horizons, and permafrost layer for prokaryotic and fungal beta diversity. Permafrost was mainly dominated by Proteobacteria and Firmicutes, with Polaromonas identified as the most abundant taxon. Thawed permafrost samples indicated increased abundance of several copiotrophic phyla, such as Bacteroidia, suggesting alterations of carbon utilization pathways within eroding permafrost.

9.
Sci Rep ; 12(1): 3986, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35314726

RESUMO

Arctic warming is affecting snow cover and soil hydrology, with consequences for carbon sequestration in tundra ecosystems. The scarcity of observations in the Arctic has limited our understanding of the impact of covarying environmental drivers on the carbon balance of tundra ecosystems. In this study, we address some of these uncertainties through a novel record of 119 site-years of summer data from eddy covariance towers representing dominant tundra vegetation types located on continuous permafrost in the Arctic. Here we found that earlier snowmelt was associated with more tundra net CO2 sequestration and higher gross primary productivity (GPP) only in June and July, but with lower net carbon sequestration and lower GPP in August. Although higher evapotranspiration (ET) can result in soil drying with the progression of the summer, we did not find significantly lower soil moisture with earlier snowmelt, nor evidence that water stress affected GPP in the late growing season. Our results suggest that the expected increased CO2 sequestration arising from Arctic warming and the associated increase in growing season length may not materialize if tundra ecosystems are not able to continue sequestering CO2 later in the season.


Assuntos
Sequestro de Carbono , Ecossistema , Regiões Árticas , Dióxido de Carbono , Mudança Climática , Plantas , Estações do Ano , Solo , Tundra
10.
Sci Total Environ ; 819: 153161, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35051474

RESUMO

Methane is an important greenhouse gas, and emissions are expected to rise in Arctic wetland ecosystems when temperatures increase due to climate change. However, current emission estimates are associated with large uncertainties because methane shows high spatial variability. A central problem is that existing methods are often spatially restricted due to limitations in access, cost, power availability, and in need of high maintenance levels. Our study explores how a setup consisting of an unmanned aerial vehicle and a high-precision trace gas analyzer can complement well-established methods, like mobile flux chambers and eddy covariance towers, by providing independent maps of spatial variability in emissions at the landscape scale. In Zackenberg Valley, Northeast Greenland, we mapped concentration measurements from a high-precision trace gas analyzer with a reported precision of 0.6 parts per billion in a high-Arctic tundra fen ecosystem. We connected the analyzer via a long tube to a consumer-grade quadcopter, finding that the combined setup could differentiate near-surface methane concentrations of less than 5 parts per billion within a few meters under favorable weather conditions. Five of ten campaigns showed that relative methane concentration hot spots and cold spots significantly correlated with areas showing relatively high and low emissions (ranging from 1.40 to 7.4 mg m-2 h-1) during study campaigns in previous years. Concurrent measurements in a stationary automated chamber setup showed comparatively low methane emissions (~0.1 to 3.9 mg m-2 h-1) compared to previous years, indicating that a further improved UAV-analyzer setup could demonstrate clear differences in an ecosystem where methane emissions are generally higher. Calm conditions with some degree of air mixing near the surface were best suited for the mapping. Windy and wet conditions should be avoided, both for the reliability of the mapping and for safely navigating the unmanned aerial vehicle.


Assuntos
Ecossistema , Metano , Regiões Árticas , Reprodutibilidade dos Testes , Tundra , Áreas Alagadas
11.
Ecohealth ; 18(2): 217-228, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34453636

RESUMO

In 2016, an outbreak of anthrax killing thousands of reindeer and affecting dozens of humans occurred on the Yamal peninsula, Northwest Siberia, after 70 years of epidemiological situation without outbreaks. The trigger of the outbreak has been ascribed to the activation of spores due to permafrost thaw that was accelerated during the summer heat wave. The focus of our study is on the dynamics of local environmental factors in connection with the observed anthrax revival. We show that permafrost was thawing rapidly for already 6 years before the outbreak. During 2011-2016, relatively warm years were followed by cold years with a thick snow cover, preventing freezing of the soil. Furthermore, the spread of anthrax was likely intensified by an extremely dry summer of 2016. Concurrent with the long-term decreasing trend in the regional annual precipitation, the rainfall in July 2016 was less than 10% of its 30-year mean value. We conclude that epidemiological situation of anthrax in the previously contaminated Arctic regions requires monitoring of climatic factors such as warming and precipitation extremes.


Assuntos
Antraz , Antraz/epidemiologia , Antraz/veterinária , Regiões Árticas , Surtos de Doenças/veterinária , Humanos , Federação Russa/epidemiologia , Sibéria/epidemiologia
12.
Glob Chang Biol ; 27(17): 4040-4059, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33913236

RESUMO

The regional variability in tundra and boreal carbon dioxide (CO2 ) fluxes can be high, complicating efforts to quantify sink-source patterns across the entire region. Statistical models are increasingly used to predict (i.e., upscale) CO2 fluxes across large spatial domains, but the reliability of different modeling techniques, each with different specifications and assumptions, has not been assessed in detail. Here, we compile eddy covariance and chamber measurements of annual and growing season CO2 fluxes of gross primary productivity (GPP), ecosystem respiration (ER), and net ecosystem exchange (NEE) during 1990-2015 from 148 terrestrial high-latitude (i.e., tundra and boreal) sites to analyze the spatial patterns and drivers of CO2 fluxes and test the accuracy and uncertainty of different statistical models. CO2 fluxes were upscaled at relatively high spatial resolution (1 km2 ) across the high-latitude region using five commonly used statistical models and their ensemble, that is, the median of all five models, using climatic, vegetation, and soil predictors. We found the performance of machine learning and ensemble predictions to outperform traditional regression methods. We also found the predictive performance of NEE-focused models to be low, relative to models predicting GPP and ER. Our data compilation and ensemble predictions showed that CO2 sink strength was larger in the boreal biome (observed and predicted average annual NEE -46 and -29 g C m-2  yr-1 , respectively) compared to tundra (average annual NEE +10 and -2 g C m-2  yr-1 ). This pattern was associated with large spatial variability, reflecting local heterogeneity in soil organic carbon stocks, climate, and vegetation productivity. The terrestrial ecosystem CO2 budget, estimated using the annual NEE ensemble prediction, suggests the high-latitude region was on average an annual CO2 sink during 1990-2015, although uncertainty remains high.


Assuntos
Dióxido de Carbono , Ecossistema , Carbono , Dióxido de Carbono/análise , Reprodutibilidade dos Testes , Estações do Ano , Solo , Tundra , Incerteza
13.
Ambio ; 50(2): 375-392, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32920769

RESUMO

Arctic and subarctic ecosystems are experiencing substantial changes in hydrology, vegetation, permafrost conditions, and carbon cycling, in response to climatic change and other anthropogenic drivers, and these changes are likely to continue over this century. The total magnitude of these changes results from multiple interactions among these drivers. Field measurements can address the overall responses to different changing drivers, but are less capable of quantifying the interactions among them. Currently, a comprehensive assessment of the drivers of ecosystem changes, and the magnitude of their direct and indirect impacts on subarctic ecosystems, is missing. The Torneträsk area, in the Swedish subarctic, has an unrivalled history of environmental observation over 100 years, and is one of the most studied sites in the Arctic. In this study, we summarize and rank the drivers of ecosystem change in the Torneträsk area, and propose research priorities identified, by expert assessment, to improve predictions of ecosystem changes. The research priorities identified include understanding impacts on ecosystems brought on by altered frequency and intensity of winter warming events, evapotranspiration rates, rainfall, duration of snow cover and lake-ice, changed soil moisture, and droughts. This case study can help us understand the ongoing ecosystem changes occurring in the Torneträsk area, and contribute to improve predictions of future ecosystem changes at a larger scale. This understanding will provide the basis for the future mitigation and adaptation plans needed in a changing climate.


Assuntos
Mudança Climática , Ecossistema , Regiões Árticas , Solo , Suécia
14.
Sci Adv ; 5(12): eaaw9883, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31840060

RESUMO

Over the past decade, the Arctic has warmed by 0.75°C, far outpacing the global average, while Antarctic temperatures have remained comparatively stable. As Earth approaches 2°C warming, the Arctic and Antarctic may reach 4°C and 2°C mean annual warming, and 7°C and 3°C winter warming, respectively. Expected consequences of increased Arctic warming include ongoing loss of land and sea ice, threats to wildlife and traditional human livelihoods, increased methane emissions, and extreme weather at lower latitudes. With low biodiversity, Antarctic ecosystems may be vulnerable to state shifts and species invasions. Land ice loss in both regions will contribute substantially to global sea level rise, with up to 3 m rise possible if certain thresholds are crossed. Mitigation efforts can slow or reduce warming, but without them northern high latitude warming may accelerate in the next two to four decades. International cooperation will be crucial to foreseeing and adapting to expected changes.

15.
Sci Rep ; 9(1): 1146, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718695

RESUMO

Natural methane emissions are noticeably influenced by warming of cold arctic ecosystems and permafrost. An evaluation specifically of Arctic natural methane emissions in relation to our ability to mitigate anthropogenic methane emissions is needed. Here we use empirical scenarios of increases in natural emissions together with maximum technically feasible reductions in anthropogenic emissions to evaluate their potential influence on future atmospheric methane concentrations and associated radiative forcing (RF). The largest amplification of natural emissions yields up to 42% higher atmospheric methane concentrations by the year 2100 compared with no change in natural emissions. The most likely scenarios are lower than this, while anthropogenic emission reductions may have a much greater yielding effect, with the potential of halving atmospheric methane concentrations by 2100 compared to when anthropogenic emissions continue to increase as in a business-as-usual case. In a broader perspective, it is shown that man-made emissions can be reduced sufficiently to limit methane-caused climate warming by 2100 even in the case of an uncontrolled natural Arctic methane emission feedback, but this requires a committed, global effort towards maximum feasible reductions.

16.
Glob Chang Biol ; 25(5): 1746-1764, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30681758

RESUMO

Permafrost peatlands are biogeochemical hot spots in the Arctic as they store vast amounts of carbon. Permafrost thaw could release part of these long-term immobile carbon stocks as the greenhouse gases (GHGs) carbon dioxide (CO2 ) and methane (CH4 ) to the atmosphere, but how much, at which time-span and as which gaseous carbon species is still highly uncertain. Here we assess the effect of permafrost thaw on GHG dynamics under different moisture and vegetation scenarios in a permafrost peatland. A novel experimental approach using intact plant-soil systems (mesocosms) allowed us to simulate permafrost thaw under near-natural conditions. We monitored GHG flux dynamics via high-resolution flow-through gas measurements, combined with detailed monitoring of soil GHG concentration dynamics, yielding insights into GHG production and consumption potential of individual soil layers. Thawing the upper 10-15 cm of permafrost under dry conditions increased CO2 emissions to the atmosphere (without vegetation: 0.74 ± 0.49 vs. 0.84 ± 0.60 g CO2 -C m-2  day-1 ; with vegetation: 1.20 ± 0.50 vs. 1.32 ± 0.60 g CO2 -C m-2  day-1 , mean ± SD, pre- and post-thaw, respectively). Radiocarbon dating (14 C) of respired CO2 , supported by an independent curve-fitting approach, showed a clear contribution (9%-27%) of old carbon to this enhanced post-thaw CO2 flux. Elevated concentrations of CO2 , CH4 , and dissolved organic carbon at depth indicated not just pulse emissions during the thawing process, but sustained decomposition and GHG production from thawed permafrost. Oxidation of CH4 in the peat column, however, prevented CH4 release to the atmosphere. Importantly, we show here that, under dry conditions, peatlands strengthen the permafrost-carbon feedback by adding to the atmospheric CO2 burden post-thaw. However, as long as the water table remains low, our results reveal a strong CH4 sink capacity in these types of Arctic ecosystems pre- and post-thaw, with the potential to compensate part of the permafrost CO2 losses over longer timescales.


Assuntos
Ciclo do Carbono , Mudança Climática , Pergelissolo , Regiões Árticas , Atmosfera/química , Dióxido de Carbono/análise , Dióxido de Carbono/metabolismo , Gases de Efeito Estufa/análise , Gases de Efeito Estufa/metabolismo , Metano/análise , Metano/metabolismo , Oxirredução , Pergelissolo/química , Plantas/metabolismo
17.
Nat Clim Chang ; 9: 852-857, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35069807

RESUMO

Recent warming in the Arctic, which has been amplified during the winter1-3, greatly enhances microbial decomposition of soil organic matter and subsequent release of carbon dioxide (CO2)4. However, the amount of CO2 released in winter is highly uncertain and has not been well represented by ecosystem models or by empirically-based estimates5,6. Here we synthesize regional in situ observations of CO2 flux from arctic and boreal soils to assess current and future winter carbon losses from the northern permafrost domain. We estimate a contemporary loss of 1662 Tg C yr-1 from the permafrost region during the winter season (October through April). This loss is greater than the average growing season carbon uptake for this region estimated from process models (-1032 Tg C yr-1). Extending model predictions to warmer conditions in 2100 indicates that winter CO2 emissions will increase 17% under a moderate mitigation scenario-Representative Concentration Pathway (RCP) 4.5-and 41% under business-as-usual emissions scenario-RCP 8.5. Our results provide a new baseline for winter CO2 emissions from northern terrestrial regions and indicate that enhanced soil CO2 loss due to winter warming may offset growing season carbon uptake under future climatic conditions.

18.
Eur Child Adolesc Psychiatry ; 27(12): 1563-1574, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29644473

RESUMO

Multicenter randomized clinical superiority single-blind trial investigated the effect of a computer training program targeting multiple cognitive functions. Seventy children with ADHD, aged 6-13, were randomized to intervention or control group. The intervention group used ACTIVATE™ for 8 weeks and both groups received treatment as usual and were assessed in regard to cognitive functions, symptoms, behavioral and functional outcome measures after 8, 12 and 24 weeks. There was no significant effect on the primary outcome, sustained attention (ß = - 0.047; CI - 0.247 to 0.153) or the secondary outcomes [parent-rated ADHD-RS, ß = - 0.037; CI (- 0.224 to 0.150); teacher-rated-ADHD-RS, ß = 0.093; CI (- 0.107 to 0.294); parent-rated-BRIEF, ß = - 0.119; CI (- 0.307 to 0.069); and teacher-rated-BRIEF, ß = 0.136; CI (- 0.048 to 0.322)]. This multicenter randomized clinical trial found no significant beneficial effects of cognitive training using the computer program ACTIVATE on the primary or secondary outcome measures in children with ADHD. Nevertheless, our study was likely underpowered to detect small to moderate changes.Trial registration ClinicalTrials.gov: NCT01752530, date of registration: December 10, 2012.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/terapia , Atenção/fisiologia , Cognição/fisiologia , Terapia Cognitivo-Comportamental/métodos , Função Executiva/fisiologia , Terapia Assistida por Computador/métodos , Jogos de Vídeo , Adolescente , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Transtorno do Deficit de Atenção com Hiperatividade/psicologia , Criança , Dinamarca , Feminino , Humanos , Masculino , Pais/psicologia , Método Simples-Cego , Resultado do Tratamento
19.
Nord J Psychiatry ; 71(6): 455-464, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28598701

RESUMO

BACKGROUND: The purpose of this trial was to examine the feasibility and efficacy of computerized cognitive exercises from Scientific Brain Training (SBT), compared to the computer game Tetris as an active placebo, in a pilot study of adolescents with attention-deficit/hyperactivity disorder (ADHD). METHOD: Eighteen adolescents with ADHD were randomized to treatment or control intervention for 7 weeks. Outcome measures were cognitive test, symptom, and motivation questionnaires. RESULTS: SBT and Tetris were feasible as home-based interventions, and participants' compliance was high, but participants perceived both interventions as not very interesting or helpful. There were no significant group differences on cognitive and ADHD-symptom measures after intervention. Pre-post intra-group measurement showed that the SBT had a significant beneficial effect on sustained attention, while the active placebo had significant beneficial effects on working memory, both with large effect sizes. CONCLUSION: Although no significant differences were found between groups on any measure, there were significant intra-group changes for each group.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/psicologia , Transtorno do Deficit de Atenção com Hiperatividade/terapia , Cognição , Terapia Assistida por Computador/métodos , Jogos de Vídeo/psicologia , Adolescente , Atenção/fisiologia , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Encéfalo/fisiologia , Cognição/fisiologia , Método Duplo-Cego , Feminino , Humanos , Masculino , Memória de Curto Prazo/fisiologia , Projetos Piloto , Inquéritos e Questionários , Resultado do Tratamento
20.
Proc Natl Acad Sci U S A ; 114(24): 6238-6243, 2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28559346

RESUMO

Permafrost in the Arctic is thawing, exposing large carbon and nitrogen stocks for decomposition. Gaseous carbon release from Arctic soils due to permafrost thawing is known to be substantial, but growing evidence suggests that Arctic soils may also be relevant sources of nitrous oxide (N2O). Here we show that N2O emissions from subarctic peatlands increase as the permafrost thaws. In our study, the highest postthaw emissions occurred from bare peat surfaces, a typical landform in permafrost peatlands, where permafrost thaw caused a fivefold increase in emissions (0.56 ± 0.11 vs. 2.81 ± 0.6 mg N2O m-2 d-1). These emission rates match those from tropical forest soils, the world's largest natural terrestrial N2O source. The presence of vegetation, known to limit N2O emissions in tundra, did decrease (by ∼90%) but did not prevent thaw-induced N2O release, whereas waterlogged conditions suppressed the emissions. We show that regions with high probability for N2O emissions cover one-fourth of the Arctic. Our results imply that the Arctic N2O budget will depend strongly on moisture changes, and that a gradual deepening of the active layer will create a strong noncarbon climate change feedback.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA