RESUMO
OBJECTIVE: To elucidate the differences in auditory performance between auditory brainstem implant (ABI) patients with tumor or nontumor etiologies. DATA SOURCES: PubMed, Embase, and Web of Science Core Collection from 1990 to 2021. REVIEW METHODS: We included published studies with 5 or more pediatric or adult ABI users. Auditory outcomes and side effects were analyzed with weighted means for closed-set, open-set speech, and categories of auditory performance (CAP) scores. Overall performance was compared using an Adult Pediatric Ranked Order Speech Perception (APROSPER) scale created for this study. RESULTS: Thirty-six studies were included and underwent full-text review. Data were extracted for 662 tumor and 267 nontumor patients. 83% were postlingually deafened and 17% were prelingually deafened. Studies that included tumor ABI patients had a weighted mean speech recognition of 39.2% (range: 19.6%-83.3%) for closed-set words, 23.4% (range: 17.2%-37.5%) for open-set words, 21.5% (range: 2.7%-48.4%) for open-set sentences, and 3.1 (range: 1.0-3.2) for CAP scores. Studies including nontumor ABI patients had a weighted mean speech recognition of 79.8% (range: 31.7%-84.4%) for closed-set words, 53.0% (range: 14.6%-72.5%) for open-set sentences, and 2.30 (range: 2.0-4.7) for CAP scores. Mean APROSPER results indicate better auditory performance among nontumor versus tumor patients (3.5 vs 3.0, P = .04). Differences in most common side effects were also observed between tumor and nontumor ABI patients. CONCLUSION: Auditory performance is similar for tumor and nontumor patients for standardized auditory test scores. However, the APROSPER scale demonstrates better ABI performance for nontumor compared to tumor patients.
Assuntos
Implantes Auditivos de Tronco Encefálico , Percepção da Fala , Adulto , Humanos , Surdez/cirurgia , Percepção da Fala/fisiologia , Resultado do Tratamento , CriançaRESUMO
Spines are unique cellular appendages that isolate synaptic input to neurons and play a role in synaptic plasticity. Using the electron microscope, we studied spines and their associated synaptic terminals on three groups of brainstem neurons: tensor tympani motoneurons, stapedius motoneurons, and medial olivocochlear neurons, all of which exert reflexive control of processes in the auditory periphery. These spines are generally simple in shape; they are infrequent and found on the somata as well as the dendrites. Spines do not differ in volume among the three groups of neurons. In all cases, the spines are associated with a synaptic terminal that engulfs the spine rather than abuts its head. The positions of the synapses are variable, and some are found at a distance from the spine, suggesting that the isolation of synaptic input is of diminished importance for these spines. Each group of neurons receives three common types of synaptic terminals. The type of terminal associated with spines of the motoneurons contains pleomorphic vesicles, whereas the type associated with spines of olivocochlear neurons contains large round vesicles. Thus, spine-associated terminals in the motoneurons appear to be associated with inhibitory processes but in olivocochlear neurons they are associated with excitatory processes.