Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Open Forum Infect Dis ; 11(2): ofae073, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38390463

RESUMO

Background: Longitudinal data on the detectability of monkeypox virus (MPXV) genetic material in different specimen types are scarce. Methods: We describe MPXV-specific polymerase chain reaction (PCR) results from adults with confirmed mpox infection from Toronto, Canada, including a cohort undergoing weekly collection of specimens from multiple anatomic sites until 1 week after skin lesions had fully healed. We quantified the time from symptom onset to resolution of detectable viral DNA (computed tomography [Ct] ≥ 35) by modeling exponential decay in Ct value as a function of illness day for each site, censoring at the time of tecovirimat initiation. Results: Among 64 men who have sex with men, the median (interquartile range [IQR]) age was 39 (32.75-45.25) years, and 49% had HIV. Twenty received tecovirimat. Viral DNA was detectable (Ct < 35) at baseline in 74% of genital/buttock/perianal skin swabs, 56% of other skin swabs, 44% of rectal swabs, 37% of throat swabs, 27% of urine, 26% of nasopharyngeal swabs, and 8% of semen samples. The median time to resolution of detectable DNA (IQR) was longest for genital/buttock/perianal skin and other skin swabs at 30.0 (23.0-47.9) and 22.4 (16.6-29.4) days, respectively, and shortest for nasopharyngeal swabs and semen at 0 (0-12.1) and 0 (0-0) days, respectively. We did not observe an effect of tecovirimat on the rate of decay in viral DNA detectability in any specimen type (all P > .05). Conclusions: MPXV DNA detectability varies by specimen type and persists for over 3-4 weeks in skin specimens. The rate of decay did not differ by tecovirimat use in this nonrandomized study.

2.
J Am Chem Soc ; 143(4): 1722-1727, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33481575

RESUMO

The development of new methods for direct viral detection using streamlined and ideally reagent-free assays is a timely and important, but challenging, problem. The challenge of combatting the COVID-19 pandemic has been exacerbated by the lack of rapid and effective methods to identify viral pathogens like SARS-CoV-2 on-demand. Existing gold standard nucleic acid-based approaches require enzymatic amplification to achieve clinically relevant levels of sensitivity and are not typically used outside of a laboratory setting. Here, we report reagent-free viral sensing that directly reads out the presence of viral particles in 5 minutes using only a sensor-modified electrode chip. The approach relies on a class of electrode-tethered sensors bearing an analyte-binding antibody displayed on a negatively charged DNA linker that also features a tethered redox probe. When a positive potential is applied, the sensor is transported to the electrode surface. Using chronoamperometry, the presence of viral particles and proteins can be detected as these species increase the hydrodynamic drag on the sensor. This report is the first virus-detecting assay that uses the kinetic response of a probe/virus complex to analyze the complexation state of the antibody. We demonstrate the performance of this sensing approach as a means to detect, within 5 min, the presence of the SARS-CoV-2 virus and its associated spike protein in test samples and in unprocessed patient saliva.


Assuntos
Técnicas Biossensoriais/métodos , Teste para COVID-19/métodos , COVID-19/virologia , Técnicas Eletroquímicas/métodos , SARS-CoV-2/isolamento & purificação , Vírion/isolamento & purificação , Técnicas Biossensoriais/instrumentação , Teste para COVID-19/instrumentação , Técnicas Eletroquímicas/instrumentação , Eletrodos , Humanos , Testes Imediatos , Saliva/virologia
3.
Emerg Infect Dis ; 26(9): 2054-2063, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32558639

RESUMO

Since its emergence in Wuhan, China, in December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected ≈6 million persons worldwide. As SARS-CoV-2 spreads across the planet, we explored the range of human cells that can be infected by this virus. We isolated SARS-CoV-2 from 2 infected patients in Toronto, Canada; determined the genomic sequences; and identified single-nucleotide changes in representative populations of our virus stocks. We also tested a wide range of human immune cells for productive infection with SARS-CoV-2. We confirm that human primary peripheral blood mononuclear cells are not permissive for SARS-CoV-2. As SARS-CoV-2 continues to spread globally, it is essential to monitor single-nucleotide polymorphisms in the virus and to continue to isolate circulating viruses to determine viral genotype and phenotype by using in vitro and in vivo infection models.


Assuntos
Betacoronavirus , Infecções por Coronavirus/virologia , Leucócitos Mononucleares/virologia , Pneumonia Viral/virologia , Replicação Viral/genética , Betacoronavirus/genética , Betacoronavirus/isolamento & purificação , Betacoronavirus/fisiologia , COVID-19 , DNA Viral/genética , DNA Viral/isolamento & purificação , Genótipo , Humanos , Cinética , Pandemias , Polimorfismo de Nucleotídeo Único , SARS-CoV-2 , Sequenciamento Completo do Genoma
4.
Nat Immunol ; 7(2): 179-89, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16388312

RESUMO

Cytotoxic T lymphocytes (CTLs) are critical for the control of human immunodeficiency virus, but containment of virus replication can be undermined by mutations in CTL epitopes that lead to virus escape. We analyzed the evolution in vivo of an immunodominant, HLA-A2-restricted CTL epitope and found two principal, diametrically opposed evolutionary pathways that exclusively affect T cell-receptor contact residues. One pathway was characterized by acquisition of CTL escape mutations and the other by selection for wild-type amino acids. The pattern of CTL responses to epitope variants shaped which variant(s) prevailed in the virus population. The pathways notably influenced the amount of plasma virus, as patients with efficient CTL selection had lower plasma viral loads than did patients without efficient selection. Thus, viral escape from CTL responses does not necessarily correlate with disease progression.


Assuntos
Antígenos HIV/genética , HIV-1/genética , HIV-1/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Adulto , Sequência de Aminoácidos , Cristalografia por Raios X , Evolução Molecular , Feminino , Produtos do Gene gag/química , Produtos do Gene gag/genética , Produtos do Gene gag/imunologia , Variação Genética , Antígenos HIV/metabolismo , Infecções por HIV/imunologia , Infecções por HIV/virologia , Antígeno HLA-A2/química , Antígeno HLA-A2/metabolismo , Humanos , Epitopos Imunodominantes/genética , Epitopos Imunodominantes/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multiproteicos , Mutação , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/imunologia , Filogenia , Seleção Genética , Linfócitos T Citotóxicos/imunologia , Viremia/imunologia , Viremia/virologia , Produtos do Gene env do Vírus da Imunodeficiência Humana
5.
J Immunol ; 175(10): 6378-89, 2005 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-16272290

RESUMO

HIV-specific CD8 T cell responses are defective in chronic HIV infection. In this study, we report that costimulation with either CD137L (4-1BBL) or CD80 (B7.1) enhanced the Ag-specific expansion and acquisition of effector function by HIV-specific memory CD8 T cells. Ag-specific T cells from recently infected donors showed maximal expansion with single costimulatory molecules. Dual costimulation of T cells from recently infected donors or from healthy donors responding to influenza epitopes led to enhanced responses when the accumulation of cytokines was measured. However, accumulation of regulatory cytokines, particularly IFN-gamma, led to inhibition of further Ag-specific CD8 T cell expansion in the cultures. This inhibition was relieved by neutralization of IFN-gamma or of IFN-gamma, TNF, and IL-10. Thus, strong costimulation of T cells in vitro can lead to induction of regulatory cytokines at levels that limit further T cell expansion. In marked contrast, T cells from long-term (>4 years) infected HIV+ donors exhibited reduced Ag-specific CD8 T cell expansion, reduced CD4 T cell responses, and minimal cytokine accumulation. Dual costimulation with both 4-1BBL and B7.1 enhanced responses of T cells from long-term infected subjects to a level similar to that obtained with T cells from early in HIV infection. Experiments with purified CD8 T cells showed that B7.1 and 4-1BBL could act directly and synergistically on CD8 T cells. Taken together, these data suggest that 4-1BBL and B7.1 have additive or synergistic effects on HIV-specific CD8 T cell responses and represent a promising combination for therapeutic vaccination for HIV.


Assuntos
Antígeno B7-1/metabolismo , Linfócitos T CD8-Positivos/imunologia , HIV/imunologia , Fatores de Necrose Tumoral/metabolismo , Ligante 4-1BB , Células Apresentadoras de Antígenos/imunologia , Antígeno B7-1/administração & dosagem , Antígeno B7-1/genética , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Citocinas/metabolismo , Infecções por HIV/imunologia , Humanos , Técnicas In Vitro , Ativação Linfocitária , Glicoproteínas de Membrana/metabolismo , Perforina , Proteínas Citotóxicas Formadoras de Poros , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fatores de Tempo , Fatores de Necrose Tumoral/administração & dosagem , Fatores de Necrose Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA