Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Nano ; 15(10): 16839-16850, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34613693

RESUMO

Low melting point eutectic systems, such as the eutectic gallium-indium (EGaIn) alloy, offer great potential in the domain of nanometallurgy; however, many of their interfacial behaviors remain to be explored. Here, a compositional change of EGaIn nanoalloys triggered by polydopamine (PDA) coating is demonstrated. Incorporating PDA on the surface of EGaIn nanoalloys renders core-shell nanostructures that accompany Ga-In phase separation within the nanoalloys. The PDA shell keeps depleting the Ga3+ from the EGaIn nanoalloys when the synthesis proceeds, leading to a Ga3+-coordinated PDA coating and a smaller nanoalloy. During this process, the eutectic nanoalloys turn into non-eutectic systems that ultimately result in the solidification of In when Ga is fully depleted. The reaction of Ga3+-coordinated PDA-coated nanoalloys with nitrogen dioxide gas is presented as an example for demonstrating the functionality of such hybrid composites. The concept of phase-separating systems, with polymeric reservoirs, may lead to tailored materials and can be explored on a variety of post-transition metals.

2.
ACS Nano ; 14(10): 14070-14079, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-32916049

RESUMO

Although it remains unexplored, the direct synthesis and expulsion of metals from alloys can offer many opportunities. Here, such a phenomenon is realized electrochemically by applying a polarizing voltage signal to liquid alloys. The signal induces an abrupt interfacial perturbation at the Ga-based liquid alloy surface and results in an unrestrained discharge of minority elements, such as Sn, In, and Zn, from the liquid alloy. We show that this can occur by either changing the surface tension or inducing a reversible redox reaction at the alloys' interface. The expelled metals exhibit nanosized and porous morphologies, and depending on the cell electrochemistry, these metals can be passivated with oxide layers or fully oxidized into distinct nanostructures. The proposed concept of metal expulsion from liquid alloys can be extended to a wide variety of molten metals for producing metallic and metallic compound nanostructures for advanced applications.

3.
ACS Appl Mater Interfaces ; 12(27): 31010-31020, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32545950

RESUMO

Metal melt extrusion in gaseous or vacuum environments is a classical approach for forming wires. However, such extrusions have not been investigated in ionic solutions. Here, we use liquid metal (LM) gallium (Ga) and its eutectic alloy with indium (EGaIn) to explore the possibility of electrochemical extrusion of wires and study the tuning of the self-liming oxide layers as the coating for these wires formed during the process. By controlling the surface tension of the LM immersed in an electrolyte, and through the electrocapillary effect, we enable the extrusion of LM wires. The surface morphologies of LM wires and the thickness of the oxide layers are investigated when Ga and EGaIn are processed in neutral and basic electrolytes using various voltages. Taking advantage of the LM oxides, we show that LM wires offer tunable surface oxide thickness and composition using the electrochemical system and investigate the related working mechanisms. The wires are formed into patterns using an automated stage and show a self-healing capability. This work presents an unconventional method for electrochemical fabrication of LM wires, offering prospects for further research and industrial scale-up.

4.
ACS Appl Mater Interfaces ; 12(17): 20119-20128, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32264673

RESUMO

Liquid metals are fast becoming a new class of universal and frictionless additives for the development of multifunctional soft and flexible materials. Herein, nanodroplets of eutectic gallium-indium alloy, which is liquid at room temperature, were used as a platform for the formulation of electrically conductive and magnetically responsive gels with the incorporation of Fe3O4 nanoparticles. The nanoadditives were prepared in situ within a water-based solution of polyvinyl alcohol. A borax cross-linking reaction was then performed to yield multifunctional flexible and self-healing gels. The physicochemical properties and changes in the nanoadditives at each step of the gel preparation method were characterized. Oxidation and complexation reactions between the liquid metal and iron oxide nanoadditives were observed. A mixture of nanosized functional magnetic Fe3O4/Fe2O3 and In-Fe oxide complexes was found to enable the magnetic susceptibility of the gels. The mechanical and self-healing properties of the gels were assessed, and finally, this flexible and multifunctional material was used as an electronic switch via remote magnetic actuation. The developed conductive and magnetic gels demonstrate great potential for the design of soft electronic systems.

5.
Small ; 16(12): e1903753, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31565857

RESUMO

Colloidal liquid metal alloys of gallium, with melting points below room temperature, are potential candidates for creating electrically conductive and flexible composites. However, inclusion of liquid metal micro- and nanodroplets into soft polymeric matrices requires a harsh auxiliary mechanical pressing to rupture the droplets to establish continuous pathways for high electrical conductivity. However, such a destructive strategy reduces the integrity of the composites. Here, this problem is solved by incorporating small loading of nonfunctionalized graphene flakes into the composites. The flakes introduce cavities that are filled with liquid metal after only relatively mild press-rolling (<0.1 MPa) to form electrically conductive continuous pathways within the polymeric matrix, while maintaining the integrity and flexibility of the composites. The composites are characterized to show that even very low graphene loadings (≈0.6 wt%) can achieve high electrical conductivity. The electrical conductance remains nearly constant, with changes less than 0.5%, even under a relatively high applied pressure of >30 kPa. The composites are used for forming flexible electrically-conductive tracks in electronic circuits with a self-healing property. The demonstrated application of co-fillers, together with liquid metal droplets, can be used for establishing electrically-conductive printable-composite tracks for future large-area flexible electronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA