Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Inorg Chem ; 63(23): 10737-10755, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38781256

RESUMO

Nonheme Fe(II) and 2-oxoglutarate (2OG)-dependent histone lysine demethylases 2A (KDM2A) catalyze the demethylation of the mono- or dimethylated lysine 36 residue in the histone H3 peptide (H3K36me1/me2), which plays a crucial role in epigenetic regulation and can be involved in many cancers. Although the overall catalytic mechanism of KDMs has been studied, how KDM2 catalysis takes place in contrast to other KDMs remains unknown. Understanding such differences is vital for enzyme redesign and can help in enzyme-selective drug design. Herein, we employed molecular dynamics (MD) and combined quantum mechanics/molecular mechanics (QM/MM) to explore the complete catalytic mechanism of KDM2A, including dioxygen diffusion and binding, dioxygen activation, and substrate oxidation. Our study demonstrates that the catalysis of KDM2A is controlled by the conformational change of the second coordination sphere (SCS), specifically by a change in the orientation of Y222, which unlocks the 2OG rearrangement from off-line to in-line mode. The study demonstrates that the variant Y222A makes the 2OG rearrangement more favorable. Furthermore, the study reveals that it is the size of H3K36me3 that prevents the 2OG rearrangement, thus rendering the enzyme inactivity with trimethylated lysine. Calculations show that the SCS and long-range interacting residues that stabilize the HAT transition state in KDM2A differ from those in KDM4A, KDM7B, and KDM6A, thus providing the basics for the enzyme-selective redesign and modulation of KDM2A without influencing other KDMs.


Assuntos
Histona Desmetilases com o Domínio Jumonji , Simulação de Dinâmica Molecular , Histona Desmetilases com o Domínio Jumonji/metabolismo , Histona Desmetilases com o Domínio Jumonji/química , Humanos , Ácidos Cetoglutáricos/química , Ácidos Cetoglutáricos/metabolismo , Oxigênio/química , Oxigênio/metabolismo , Biocatálise , Teoria Quântica , Compostos Ferrosos/química , Compostos Ferrosos/metabolismo , Proteínas F-Box
2.
Biomark Res ; 12(1): 47, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704604

RESUMO

BACKGROUND: Despite advancements in chronic myeloid leukemia (CML) therapy with tyrosine kinase inhibitors (TKIs), resistance and intolerance remain significant challenges. Leukemia stem cells (LSCs) and TKI-resistant cells rely on altered mitochondrial metabolism and oxidative phosphorylation. Targeting rewired energy metabolism and inducing non-apoptotic cell death, along with the release of damage-associated molecular patterns (DAMPs), can enhance therapeutic strategies and immunogenic therapies against CML and prevent the emergence of TKI-resistant cells and LSC persistence. METHODS: Transcriptomic analysis was conducted using datasets of CML patients' stem cells and healthy cells. DNA damage was evaluated by fluorescent microscopy and flow cytometry. Cell death was assessed by trypan blue exclusion test, fluorescent microscopy, flow cytometry, colony formation assay, and in vivo Zebrafish xenografts. Energy metabolism was determined by measuring NAD+ and NADH levels, ATP production rate by Seahorse analyzer, and intracellular ATP content. Mitochondrial fitness was estimated by measurements of mitochondrial membrane potential, ROS, and calcium accumulation by flow cytometry, and morphology was visualized by TEM. Bioinformatic analysis, real-time qPCR, western blotting, chemical reaction prediction, and molecular docking were utilized to identify the drug target. The immunogenic potential was assessed by high mobility group box (HMGB)1 ELISA assay, luciferase-based extracellular ATP assay, ectopic calreticulin expression by flow cytometry, and validated by phagocytosis assay, and in vivo vaccination assay using syngeneic C57BL/6 mice. RESULTS: Transcriptomic analysis identified metabolic alterations and DNA repair deficiency signatures in CML patients. CML patients exhibited enrichment in immune system, DNA repair, and metabolic pathways. The gene signature associated with BRCA mutated tumors was enriched in CML datasets, suggesting a deficiency in double-strand break repair pathways. Additionally, poly(ADP-ribose) polymerase (PARP)1 was significantly upregulated in CML patients' stem cells compared to healthy counterparts. Consistent with the CML patient DNA repair signature, treatment with the methylated indolequinone MAC681 induced DNA damage, mitochondrial dysfunction, calcium homeostasis disruption, metabolic catastrophe, and necroptotic-like cell death. In parallel, MAC681 led to PARP1 degradation that was prevented by 3-aminobenzamide. MAC681-treated myeloid leukemia cells released DAMPs and demonstrated the potential to generate an immunogenic vaccine in C57BL/6 mice. MAC681 and asciminib exhibited synergistic effects in killing both imatinib-sensitive and -resistant CML, opening new therapeutic opportunities. CONCLUSIONS: Overall, increasing the tumor mutational burden by PARP1 degradation and mitochondrial deregulation makes CML suitable for immunotherapy.

3.
Biochemistry ; 63(8): 1038-1050, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38577885

RESUMO

The ethylene-forming enzyme (EFE) is an Fe(II), 2-oxoglutarate (2OG), and l-arginine (l-Arg)-dependent oxygenase that either forms ethylene and three CO2/bicarbonate from 2OG or couples the decarboxylation of 2OG to C5 hydroxylation of l-Arg. l-Arg binds with C5 toward the metal center, causing 2OG to change from monodentate to chelate metal interaction and OD1 to OD2 switch of D191 metal coordination. We applied anaerobic UV-visible spectroscopy, X-ray crystallography, and computational approaches to three EFE systems with high-resolution structures. The ineffective l-Arg analogue l-canavanine binds to the EFE with O5 pointing away from the metal center while promoting chelate formation by 2OG but fails to switch the D191 metal coordination from OD1 to OD2. Substituting alanine for R171 that interacts with 2OG and l-Arg inactivates the protein, prevents metal chelation by 2OG, and weakens l-Arg binding. The R171A EFE had electron density at the 2OG binding site that was identified by mass spectrometry as benzoic acid. The substitution by alanine of Y306 in the EFE, a residue 12 Å away from the catalytic metal center, generates an interior cavity that leads to multiple local and distal structural changes that reduce l-Arg binding and significantly reduce the enzyme activity. Flexibility analyses revealed correlated and anticorrelated motions in each system, with important distinctions from the wild-type enzyme. In combination, the results are congruent with the currently proposed enzyme mechanism, reinforce the importance of metal coordination by OD2 of D191, and highlight the importance of the second coordination sphere and longer range interactions in promoting EFE activity.


Assuntos
Canavanina , Compostos Ferrosos , Liases , Compostos Ferrosos/metabolismo , Sítios de Ligação , Alanina , Ácidos Cetoglutáricos/metabolismo
4.
Leukemia ; 38(1): 67-81, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37904054

RESUMO

Myelomonocytic and monocytic acute myeloid leukemia (AML) subtypes are intrinsically resistant to venetoclax-based regimens. Identifying targetable vulnerabilities would limit resistance and relapse. We previously documented the synergism of venetoclax and cardiac glycoside (CG) combination in AML. Despite preclinical evidence, the repurposing of cardiac glycosides (CGs) in cancer therapy remained unsuccessful due to a lack of predictive biomarkers. We report that the ex vivo response of AML patient blasts and the in vitro sensitivity of established cell lines to the hemi-synthetic CG UNBS1450 correlates with the ATPase Na+/K+ transporting subunit alpha 1 (ATP1A1)/BCL2 like 1 (BCL2L1) expression ratio. Publicly available AML datasets identify myelomonocytic/monocytic differentiation as the most robust prognostic feature, along with core-binding factor subunit beta (CBFB), lysine methyltransferase 2A (KMT2A) rearrangements, and missense Fms-related receptor tyrosine kinase 3 (FLT3) mutations. Mechanistically, BCL2L1 protects from cell death commitment induced by the CG-mediated stepwise triggering of ionic perturbation, protein synthesis inhibition, and MCL1 downregulation. In vivo, CGs showed an overall tolerable profile while impacting tumor growth with an effect ranging from tumor growth inhibition to regression. These findings suggest a predictive marker for CG repurposing in specific AML subtypes.


Assuntos
Glicosídeos Cardíacos , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Sulfonamidas/farmacologia , Tirosina Quinase 3 Semelhante a fms/metabolismo , Linhagem Celular Tumoral , ATPase Trocadora de Sódio-Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/uso terapêutico , Proteína bcl-X/metabolismo
5.
Chem Sci ; 14(40): 10997-11011, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37860658

RESUMO

Enzymes are versatile and efficient biological catalysts that drive numerous cellular processes, motivating the development of enzyme design approaches to tailor catalysts for diverse applications. In this perspective, we investigate the unique properties of natural, evolved, and designed enzymes, recognizing their strengths and shortcomings. We highlight the challenges and limitations of current enzyme design protocols, with a particular focus on their limited consideration of long-range electrostatic and dynamic effects. We then delve deeper into the impact of the protein environment on enzyme catalysis and explore the roles of preorganized electric fields, second coordination sphere interactions, and protein dynamics for enzyme function. Furthermore, we present several case studies illustrating successful enzyme-design efforts incorporating enzyme strategies mentioned above to achieve improved catalytic properties. Finally, we envision the future of enzyme design research, spotlighting the challenges yet to be overcome and the synergy of intrinsic electric fields, second coordination sphere interactions, and conformational dynamics to push the state-of-the-art boundaries.

6.
RSC Chem Biol ; 4(9): 635-646, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37654506

RESUMO

This review summarizes the structures, biochemical properties, and mechanisms of two major biological sources of ethylene, the ethylene-forming enzyme (EFE) and 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase (ACCO). EFE is found in selected bacteria and fungi where it catalyzes two reactions: (1) the oxygen-dependent conversion of 2-oxoglutarate (2OG) to ethylene plus three molecules of CO2/bicarbonate and (2) the oxidative decarboxylation of 2OG while transforming l-arginine to guanidine and l-Δ1-pyrroline-5-carboxylic acid. ACCO is present in plants where it makes the plant hormone by transforming ACC, O2, and an external reductant to ethylene, HCN, CO2, and water. Despite catalyzing distinct chemical reactions, EFE and ACCO are related in sequence and structure, and both enzymes require Fe(ii) for their activity. Advances in our understanding of EFE, derived from both experimental and computational approaches, have clarified how this enzyme catalyzes its dual reactions. Drawing on the published mechanistic studies of ACCO and noting the parallels between this enzyme and EFE, we propose a novel reaction mechanism for ACCO.

7.
Chemistry ; 29(51): e202301305, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37258457

RESUMO

KDM6A (UTX) and KDM6B (JMJD3) are human non-heme Fe(II) and 2-oxoglutarate (2OG) dependent JmjC oxygenases that catalyze the demethylation of trimethylated lysine 27 in the N-terminal tail of histone H3, a post-translational modification that regulates transcription. A Combined Quantum Mechanics/ Molecular Mechanics (QM/MM) and Molecular Dynamics (MD) study on the catalytic mechanism of KDM6A/B reveals that the transition state for the rate-limiting hydrogen atom transfer (HAT) reaction in KDM6A catalysis is stabilized by polar (Asn217) and aromatic (Trp369)/non-polar (Pro274) residues in contrast to KDM4, KDM6B and KDM7 demethylases where charged residues (Glu, Arg, Asp) are involved. KDM6A employs both σ- and π-electron transfer pathways for HAT, whereas KDM6B employs the σ-electron pathway. Differences in hydrogen bonding of the Fe-chelating Glu252(KDM6B) contribute to the lower energy barriers in KDM6B vs. KDM6A. The study reveals a dependence of the activation barrier of the rebound hydroxylation on the Fe-O-C angle in the transition state of KDM6A. Anti-correlation of the Zn-binding domain with the active site residues is a key factor distinguishing KDM6A/B from KDM7/4s. The results reveal the importance of communication between the Fe center, second coordination sphere, and long-range interactions in catalysis by KDMs and, by implication, other 2OG oxygenases.


Assuntos
Histona Desmetilases , Histonas , Humanos , Histona Desmetilases/metabolismo , Histonas/metabolismo , Histona Desmetilases com o Domínio Jumonji/química , Oxigenases/metabolismo , Catálise , Compostos Ferrosos/metabolismo
8.
Phys Chem Chem Phys ; 25(19): 13772-13783, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37159254

RESUMO

The non-heme Fe(II) and 2-oxoglutarate (2OG) dependent ethylene-forming enzyme (EFE) catalyzes both ethylene generation and L-Arg hydroxylation. Despite experimental and computational progress in understanding the mechanism of EFE, no EFE variant has been optimized for ethylene production while simultaneously reducing the L-Arg hydroxylation activity. In this study, we show that the two L-Arg binding conformations, associated with different reactivity preferences in EFE, lead to differences in the intrinsic electric field (IntEF) of EFE. Importantly, we suggest that applying an external electric field (ExtEF) along the Fe-O bond in the EFE·Fe(III)·OO-˙·2OG·L-Arg complex can switch the EFE reactivity between L-Arg hydroxylation and ethylene generation. Furthermore, we explored how applying an ExtEF alters the geometry, electronic structure of the key reaction intermediates, and the individual energy contributions of second coordination sphere (SCS) residues through combined quantum mechanics/molecular mechanics (QM/MM) calculations. Experimentally generated variant forms of EFE with alanine substituted for SCS residues responsible for stabilizing the key intermediates in the two reactions of EFE led to changes in enzyme activity, thus demonstrating the key role of these residues. Overall, the results of applying an ExtEF indicate that making the IntEF of EFE less negative and stabilizing the off-line binding of 2OG is predicted to increase ethylene generation while reducing L-Arg hydroxylation.


Assuntos
Arginina , Compostos Férricos , Hidroxilação , Arginina/química , Etilenos/química
9.
Chemistry ; 29(24): e202300854, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37009811

RESUMO

Invited for the cover of this issue are Christo Z. Christov and co-workers at Michigan Technological University, University of Oxford, and Michigan State University. The image depicts the oxygen diffusion channel in class 7 histone demethylase (PHF8) and ethylene-forming enzyme (EFE) and changes in the enzymes' conformations upon binding. Read the full text of the article at 10.1002/chem.202300138.


Assuntos
Histona Desmetilases , Ácidos Cetoglutáricos , Humanos , Histona Desmetilases/metabolismo , Ácidos Cetoglutáricos/metabolismo , Oxigenases , Oxigênio , Compostos Ferrosos/metabolismo , Fatores de Transcrição
10.
Chemistry ; 29(24): e202300138, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-36701641

RESUMO

This study investigates dioxygen binding and 2-oxoglutarate (2OG) coordination by two model non-heme FeII /2OG enzymes: a class 7 histone demethylase (PHF8) that catalyzes the hydroxylation of its H3K9me2 histone substrate leading to demethylation reactivity and the ethylene-forming enzyme (EFE), which catalyzes two competing reactions of ethylene generation and substrate l-Arg hydroxylation. Although both enzymes initially bind 2OG by using an off-line 2OG coordination mode, in PHF8, the substrate oxidation requires a transition to an in-line mode, whereas EFE is catalytically productive for ethylene production from 2OG in the off-line mode. We used classical molecular dynamics (MD), quantum mechanics/molecular mechanics (QM/MM) MD and QM/MM metadynamics (QM/MM-MetD) simulations to reveal that it is the dioxygen binding process and, ultimately, the protein environment that control the formation of the in-line FeIII -OO⋅- intermediate in PHF8 and the off-line FeIII -OO⋅- intermediate in EFE.


Assuntos
Histona Desmetilases , Oxigenases , Ácidos Cetoglutáricos/química , Oxigênio , Compostos Férricos , Compostos Ferrosos/metabolismo , Etilenos
11.
DNA (Basel) ; 3(2): 65-84, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38698914

RESUMO

Nucleic acid methylations are important genetic and epigenetic biomarkers. The formation and removal of these markers is related to either methylation or demethylation. In this review, we focus on the demethylation or oxidative modification that is mediated by the 2-oxoglutarate (2-OG)/Fe(II)-dependent AlkB/TET family enzymes. In the catalytic process, most enzymes oxidize 2-OG to succinate, in the meantime oxidizing methyl to hydroxymethyl, leaving formaldehyde and generating demethylated base. The AlkB enzyme from Escherichia coli has nine human homologs (ALKBH1-8 and FTO) and the TET family includes three members, TET1 to 3. Among them, some enzymes have been carefully studied, but for certain enzymes, few studies have been carried out. This review focuses on the kinetic properties of those 2-OG/Fe(II)-dependent enzymes and their alkyl substrates. We also provide some discussions on the future directions of this field.

12.
ACS Catal ; 12(9): 5327-5344, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-36339349

RESUMO

Methylation of cytosine bases is strongly linked to gene expression, imprinting, aging, and carcinogenesis. The Ten-eleven translocation (TET) family of enzymes, which are Fe(II)/2-oxoglutarate (2OG)-dependent enzymes, employ Fe(IV)=O species to dealkylate the lesioned bases to an unmodified cytosine. Recently, it has been shown that the TET2 enzyme can catalyze promiscuously DNA substrates containing unnatural alkylated cytosine. Such unnatural substrates of TET can be used as direct probes for measuring the TET activity or capturing TET from cellular samples. Herein, we studied the catalytic mechanisms during the oxidation of the unnatural C5-position modifications (5-ethylcytosine (5eC), 5-vinylcytosine (5vC) and 5-ethynylcytosine (5eyC)) and the demethylation of N4-methylated lesions (4-methylcytosine (4mC) and 4,4-dimethylcytosine(4dmC)) of the cytosine base by the TET2 enzyme using molecular dynamics (MD) and combined quantum mechanics and molecular mechanics (QM/MM) computational approaches. The results reveal that the chemical nature of the alkylation of the double-stranded (ds) DNA substrates induces distinct changes in the interactions in the binding site, the second coordination sphere, and long-range correlated motions of the ES complexes. The rate-determining hydrogen atom transfer (HAT) is faster in N4-methyl substituent substrates than in the C5-alkylations. Importantly, the calculations show the preference of hydroxylation over desaturation in both 5eC and 5vC substrates. The studies elucidate the post-hydroxylation rearrangements of the hydroxylated intermediates of 5eyC and 5vC to ketene and 5-formylmethylcytosine (5fmC), respectively, and hydrolysis of hemiaminal intermediate of 4mC to formaldehyde and unmodified cytosine proceed exclusively in aqueous solution outside of the enzyme environment. Overall, the studies show that the chemical nature of the unnatural alkylated cytosine substrates exercises distinct effects on the binding interactions, reaction mechanism, and dynamics of TET2.

13.
JACS Au ; 2(9): 2169-2186, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36186565

RESUMO

Fe(II)-dependent oxygenases employ hydrogen atom transfer (HAT) to produce a myriad of products. Understanding how such enzymes use dynamic processes beyond the immediate vicinity of the active site to control the selectivity and efficiency of HAT is important for metalloenzyme engineering; however, obtaining such knowledge by experiments is challenging. This study develops a computational framework for identifying second coordination sphere (SCS) and especially long-range (LR) residues relevant for catalysis through dynamic cross-correlation analysis (DCCA) using the human histone demethylase PHF8 (KDM7B) as a model oxygenase. Furthermore, the study explores the mechanistic pathways of influence of the SCS and LR residues on the HAT reaction. To demonstrate the plausibility of the approach, we investigated the effect of a PHF8 F279S clinical mutation associated with X-linked intellectual disability, which has been experimentally shown to ablate PHF8-catalyzed demethylation. In agreement, the molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) studies showed a change in the H31-14K9me2 substrate orientation and an increased HAT barrier. We systematically analyzed the pathways by which the identified SCS and LR residues may influence HAT by exploring changes in H3K9me2 substrate orientation, interdomain correlated motions, HAT transition state stabilization, reaction energetics, electron transfer mechanism, and alterations in the intrinsic electric field of PHF8. Importantly, SCS and LR variations decrease key motions of α9-α12 of the JmjC domain toward the Fe(IV)-center that are associated with tighter binding of the H31-14K9me2 substrate. SCS and LR residues alter the intrinsic electric field of the enzyme along the reaction coordinate and change the individual energetic contributions of residues toward TS stabilization. The overall results suggest that DCCA can indeed identify non-active-site residues relevant for catalysis. The substitutions of such dynamically correlated residues might be used as a tool to tune HAT in non-heme Fe(II)- and 2OG-dependent enzymes.

14.
Chemistry ; 28(65): e202201474, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-35948517

RESUMO

Carbene transfer biocatalysis has evolved from basic science to an area with vast potential for the development of new industrial processes. In this study, we show that YfeX, naturally a peroxidase, has great potential for the development of new carbene transferases, due to its high intrinsic reactivity, especially for the N-H insertion reaction of aromatic and aliphatic primary and secondary amines. YfeX shows high stability against organic solvents (methanol and DMSO), greatly improving turnover of hydrophobic substrates. Interestingly, in styrene cyclopropanation, WT YfeX naturally shows high enantioselectivity, generating the trans product with 87 % selectivity for the (R,R) enantiomer. WT YfeX also catalyzes the Si-H insertion efficiently. Steric effects in the active site were further explored using the R232A variant. Quantum Mechanics/Molecular Mechanics (QM/MM) calculations reveal details on the mechanism of Si-H insertion. YfeX, and potentially other peroxidases, are exciting new targets for the development of improved carbene transferases.


Assuntos
Metano , Transferases , Transferases/metabolismo , Metano/química , Biocatálise , Domínio Catalítico , Peroxidases
15.
Nutrients ; 14(9)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35565854

RESUMO

Previously, the in vitro growth of cancer stem cells in the form of tumor spheres from five different brain cancer cell lines was found to be methionine-dependent. As this earlier work indicated that ALDH1L2, a folate-dependent mitochondria aldehyde dehydrogenase gene, is upregulated in glioblastoma stem cells, we invalidated this gene using CRISPR-cas 9 technique in this present work. We reported here that this invalidation was effective in U251 glioblastoma cells, and no cas9 off target site could be detected by genome sequencing of the two independent knockout targeting either exon I or exon III. The knockout of ALDH1L2 gene in U251 cells rendered the growth of the cancer stem cells of U251 methionine independent. In addition, a much higher ROS (reactive oxygen radicals) level can be detected in the knockout cells compared to the wild type cells. Our evidence here linked the excessive ROS level of the knockout cells to reduced total cellular NADPH. Our evidence suggested also that the cause of the slower growth of the knockout turmor sphere may be related to its partial differentiation.


Assuntos
Glioblastoma , Linhagem Celular Tumoral , Glioblastoma/metabolismo , Humanos , Metionina/metabolismo , Células-Tronco Neoplásicas/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
16.
Pediatr Dev Pathol ; 25(4): 435-446, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35382634

RESUMO

BACKGROUND: Increasing number of mutations responsible for vascular lesions, leading to ischemic or hemorrhagic stroke in young adults, has been identified in the recent years. It has been demonstrated in both mice and humans, that mutations in COL4A1 gene promote cerebral hemorrhages. In humans, both adults and children may be affected, and the spectrum has been broadened recently to neonates and fetuses. METHODS: We present a cohort of eight COL4A1 mutated fetuses in which cerebral hemorrhages were detected by ultrasound leading to elective terminations of pregnancy. RESULTS: Our neuropathological studies demonstrated a strikingly similar pathological pattern, dominated by supra- and infratentorial multifocal hemorrhagic lesions of various abundance and age in the vicinity of enlarged small vessels having a discontinuous wall. This was constantly associated with a spectrum of supratentorial post-ischemic damages of the grey and white matters. Morphometric studies of brain vessels confirmed vascular dilation and hypervascularization in both grey and white matters and severe attenuation of the smooth-muscle actin staining in the white matter. CONCLUSION: These observations add to the rare human neuropathological phenotype of COL4A1 mutations. Its recognition is mandatory to enhance the number of tested patients in the future, as well as the genetic counseling of parents.


Assuntos
Colágeno Tipo IV , Diagnóstico Pré-Natal , Hemorragia Cerebral/genética , Colágeno Tipo IV/genética , Feminino , Humanos , Mutação , Fenótipo , Gravidez
17.
Mar Drugs ; 19(6)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34063867

RESUMO

Aplysinopsins are a class of marine indole alkaloids that exhibit a wide range of biological activities. Although both the indole and N-benzyl moieties of aplysinopsins are known to possess antiproliferative activity against cancer cells, their mechanism of action remains unclear. Through in vitro and in vivo proliferation and viability screening of newly synthesized aplysinopsin analogs on myelogenous leukemia cell lines and zebrafish toxicity tests, as well as analysis of differential toxicity in noncancerous RPMI 1788 cells and PBMCs, we identified EE-84 as a promising novel drug candidate against chronic myeloid leukemia. This indole derivative demonstrated drug-likeness in agreement with Lipinski's rule of five. Furthermore, EE-84 induced a senescent-like phenotype in K562 cells in line with its cytostatic effect. EE-84-treated K562 cells underwent morphological changes in line with mitochondrial dysfunction concomitant with autophagy and ER stress induction. Finally, we demonstrated the synergistic cytotoxic effect of EE-84 with a BH3 mimetic, the Mcl-1 inhibitor A-1210477, against imatinib-sensitive and resistant K562 cells, highlighting the inhibition of antiapoptotic Bcl-2 proteins as a promising novel senolytic approach against chronic myeloid leukemia.


Assuntos
Antineoplásicos/farmacologia , Citotoxinas/farmacologia , Indóis/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Sulfonamidas/farmacologia , Triptofano/análogos & derivados , Animais , Antineoplásicos/química , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular , Citotoxinas/química , Citotoxinas/toxicidade , Sinergismo Farmacológico , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Indóis/química , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Sulfonamidas/química , Triptofano/química , Triptofano/farmacologia , Triptofano/toxicidade , Peixe-Zebra
18.
Chemistry ; 27(46): 11750, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34191375

RESUMO

Invited for the cover of this issue are Christo Z. Christov and co-workers at Michigan Technological University and University of Oxford. The image depicts the effects of applying an external electric field on the demethylation of dimethylated arginine substrate by a non-heme Fe center Histone N-methyl arginine demethylase. Read the full text of the article at 10.1002/chem.202101174.

19.
Chemistry ; 27(46): 11827-11836, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-33989435

RESUMO

Arginine methylation is an important mechanism of epigenetic regulation. Some Fe(II) and 2-oxoglutarate dependent Jumonji-C (JmjC) Nϵ-methyl lysine histone demethylases also have N-methyl arginine demethylase activity. We report combined molecular dynamic (MD) and Quantum Mechanical/Molecular Mechanical (QM/MM) studies on the mechanism of N-methyl arginine demethylation by human KDM4E and compare the results with those reported for N-methyl lysine demethylation by KDM4A. At the KDM4E active site, Glu191, Asn291, and Ser197 form a conserved scaffold that restricts substrate dynamics; substrate binding is also mediated by an out of active site hydrogen-bond between the substrate Ser1 and Tyr178. The calculations imply that in either C-H or N-H potential bond cleaving pathways for hydrogen atom transfer (HAT) during N-methyl arginine demethylation, electron transfer occurs via a σ-channel; the transition state for the N-H pathway is ∼10 kcal/mol higher than for the C-H pathway due to the higher bond dissociation energy of the N-H bond. The results of applying external electric fields (EEFs) reveal EEFs with positive field strengths parallel to the Fe=O bond have a significant barrier-lowering effect on the C-H pathway, by contrast, such EEFs inhibit the N-H activation rate. The overall results imply that KDM4 catalyzed N-methyl arginine demethylation and N-methyl lysine demethylation occur via similar C-H abstraction and rebound mechanisms leading to methyl group hydroxylation, though there are differences in the interactions leading to productive binding of intermediates.


Assuntos
Histonas , Histona Desmetilases com o Domínio Jumonji , Arginina/metabolismo , Catálise , Desmetilação , Epigênese Genética , Histonas/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji/metabolismo
20.
J Nutr Biochem ; 84: 108415, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32645655

RESUMO

The risks of nonalcoholic steatohepatitis (NASH) and deficiency in vitamin B12 and folate (methyl donor deficiency, MDD) are increased in inflammatory bowel disease (IBD). We investigated the influence of MDD on NASH in rats with DSS-induced colitis. Two-month-old male Wistar rats were subjected to MDD diet and/or ingestion of DSS and compared to control animals. We studied steatosis, inflammation, fibrosis, plasma levels of metabolic markers, cytokines and lipopolysaccharide, and inflammatory pathways in liver. MDD triggered a severe macrovesicular steatosis with inflammation in DSS animals that was not observed in animals subjected to DSS or MDD only. The macrovesicular steatosis was closely correlated to folate, vitamin B12, homocysteine plasma level and liver S-adenosyl methionine/S-adenosyl homocysteine (SAM/SAH) ratio. Liver inflammation was evidenced by activation of nuclear factor kappa B (NFκB) pathway and nuclear translocation of NFκB phospho-p65. MDD worsened the increase of interleukin 1-beta (IL-1ß) and abolished the increase of IL10 produced by DSS colitis. It increased monocyte chemoattractant protein 1 (MCP-1). MDD triggers liver macrovesicular steatosis and inflammation through imbalanced expression of IL-1ß vs. IL10 and increase of MCP-1 in DSS colitis. Our results suggest evaluating whether IBD patients with MDD and increase of MCP-1 are at higher risk of NASH.


Assuntos
Colite/complicações , Fígado Gorduroso/etiologia , Deficiência de Ácido Fólico/complicações , Inflamação/complicações , Fígado/patologia , Deficiência de Vitamina B 12/complicações , Animais , Colite/induzido quimicamente , Colite/patologia , Fígado Gorduroso/patologia , Deficiência de Ácido Fólico/patologia , Inflamação/patologia , Masculino , Ratos Wistar , Sulfatos/efeitos adversos , Deficiência de Vitamina B 12/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA