Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Ginekol Pol ; 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37599576

RESUMO

OBJECTIVES: Miscarriage is the most common complication of pregnancy. Infections are well-known causes of pregnancy loss. It has been suggested that infection with SARS-CoV-2 virus may also have an adverse effect on the course of early pregnancy, causing miscarriage. AIM: To assess the impact of the COVID-19 pandemic on pregnancy loss during the first half of pregnancy. MATERIAL AND METHODS: The clinical records of patients hospitalized at the Department of Fetal Medicine and Gynecology; Medical University of Lodz were retrospectively reviewed. The study was done during the pandemic (March 2020 to the end of March 2022) and the previous 2 years due to missed abortion, indicated by no fetal heartbeat and spontaneous (complete or incomplete) abortion with vaginal bleeding. RESULTS: While 682 women were hospitalized due to miscarriage in the first half of pregnancy in the period 2018-2020, there were 516 hospitalized during the pandemic. No differences in the proportion of missed and spontaneous abortions with bleeding were found between the group of patients before and during the epidemic SARS CoV-2. COVID-19 exposure appears to have an impact on earlier pregnancy loss. CONCLUSIONS: There is no evidence that the COVID-19 pandemic predisposes to the abnormal course of pregnancy in its first half. OBJECTIVES: Miscarriage is the most common complication of pregnancy. Infections are well-known causes of pregnancy loss. It has been suggested that infection with SARS-CoV-2 virus may also have an adverse effect on the course of early pregnancy, causing miscarriage. AIM: To assess the impact of the COVID-19 pandemic on pregnancy loss during the first half of pregnancy. MATERIAL AND METHODS: The clinical records of patients hospitalized at the Department of Fetal Medicine and Gynecology; Medical University of Lodz were retrospectively reviewed. The study was done during the pandemic (March 2020 to the end of March 2022) and the previous 2 years due to missed abortion, indicated by no fetal heartbeat and spontaneous (complete or incomplete) abortion with vaginal bleeding. RESULTS: While 682 women were hospitalized due to miscarriage in the first half of pregnancy in the period 2018-2020, there were 516 hospitalized during the pandemic. No differences in the proportion of missed and spontaneous abortions with bleeding were found between the group of patients before and during the epidemic SARS CoV-2. COVID-19 exposure appears to have an impact on earlier pregnancy loss. CONCLUSIONS: There is no evidence that the COVID-19 pandemic predisposes to the abnormal course of pregnancy in its first half.

2.
Front Chem ; 11: 1150164, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007058

RESUMO

Recently, we investigated the substitution behavior of a series of ruthenium(II) complexes of the general formula [RuII(terpy)(N∧N)Cl]Cl, where terpy = 2,2':6',2″-terpyridine, N∧N = bidentate ligand, in aqueous solutions. We have shown that the most and least reactive complexes of the series are [RuII(terpy)(en)Cl]Cl (en = ethylenediamine) and [RuII(terpy)(phen)Cl]Cl (phen = 1, 10-phenantroline), respectively, as a result of different electronic effects provided by the bidentate spectator chelates. Polypyridyl amine Ru(II) complex, viz. [Ru(terpy)(en)Cl]Cl and [Ru(terpy)(ampy)Cl]Cl (where ampy = 2-(aminomethyl)pyridine), in which the terpy chelate labilizes the metal center, are able to catalyze the conversion of NAD+ to 1,4-NADH using sodium formate as a source of hydride. We showed that this complex can control the [NAD+]/[NADH] ratio and potentially induce reductive stress in living cells, which is accepted as an effective method to kill cancer cells. Polypyridyl Ru(II) complexes, characterized in terms of the behavior in aqueous solutions, can be used as model systems to monitor heterogeneous multiphase ligand substitution reactions at the solid-liquid interface. Colloidal coordination compounds in the submicron range were synthesized from Ru(II)-aqua derivatives of starting chlorido complexes via the anti-solvent procedure and stabilized by a surfactant shell layer.

3.
RSC Adv ; 12(33): 21191-21202, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35975079

RESUMO

In the present study, electronic effects on the mechanism of the NAD+ coenzyme reduction in the presence of formate, catalysed by a non-organometallic ruthenium(ii) polypyridyl amine complex, were investigated. The [RuII(terpy)(ampy)Cl]Cl (terpy = 2,2':6',2''-terpyridine, ampy = 2-(aminomethyl)pyridine) complex was employed as the catalyst. The reactions were studied in a water/ethanol mixture as a function of formate, catalyst, and NAD+ concentrations at 37 °C. The overall process was found to be 11 to 18 times slower than for the corresponding ethylenediamine (en) complex as the result of π-back bonding effects of the ampy ligand. The mechanistic studies revealed a complete set of reactions that accounted for the overall catalytic cycle based on a formate-induced hydride transfer reaction to form the reduced coenzyme, NADH. The geometries of the ruthenium(ii)-ampy complexes involved in the catalytic cycle and free energy changes for the main steps were predicted by DFT calculations. Similar calculations were also performed for the analogues ruthenium(ii)-en and ruthenium(ii)-bipy complexes (bipy = 2,2'-bipyridine). The DFT calculated energies show that both the solvent-formato exchange and the formato-hydrido conversion reactions have negative (favourable) energies to proceed spontaneously. The reactions involving the en complex have the more negative (favourable) reaction energies, followed by the ampy complex, in agreement with faster reactions for en complexes and slower reactions for bipy complexes than for ampy complexes.

4.
J Comput Chem ; 43(17): 1161-1175, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35484985

RESUMO

In this paper, we investigated water exchange reactions and substitution of aqua RuII complexes of general formula [Ru(terpy)(N^N)(H2 O)]2+ (where N^N = ethylenediamine (en), 1,2-(aminomethyl)pyridine (ampy) and 2,2'-bipyridine (bipy)) by ammonia and thioformaldehyde. These reactions were studied in detail by applying conceptual density functional theory. This approach enabled us to gain further insight into the underlying reaction mechanism at the microscopic level (involving only direct participants of the reaction, without the influence of the solvent) and to put the concept of reaction mechanism on a quantitative basis. The course of the chemical reaction along the reaction coordinate ξ, is rationalized in terms of reaction energy, force, dipole moment, and reaction electronic flux (REF). The results yield and characterize the significant influence of an intermolecular hydrogen bond formed between the entering and the spectator ligand to the overall energy barrier of the reactions.

5.
J Inorg Biochem ; 225: 111595, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34555599

RESUMO

The advancement of Ru(edta) complexes (edta4- = ethylenediamineteraacetate) mediated reactions, including NO generation and its utilization, has not been systematically reviewed to date. This review aims to report the research progress that has been made in exploring the application of Ru(edta) complexes in trapping and generation of NO. Furthermore, utilization of the potential of Ru(edta) complexes to mimic NO synthase and nitrite reductase activity, including thermodynamics and kinetics of NO binding to Ru(edta) complexes, their NO scavenging (in vitro), and antitumor activity will be discussed. Also, the role of [Ru(edta)(NO)] in mediating electrochemical reduction of nitrite, S-nitrosylation of biological thiols, and cross-talk between NO and H2S, will be covered. Reports on the NO-related chemistry of Fe(edta) complexes showing similar behavior are contextualized in this review for comparison purposes. The research contributions compiled herein will provide in-depth mechanistic knowledge for understanding the diverse routes pertaining to the formation of the [Ru(edta)(NO)] species, and its role in effecting the aforementioned reactions of biochemical significance.


Assuntos
Complexos de Coordenação/química , Sequestradores de Radicais Livres/química , Óxido Nítrico/química , Arginina/química , Azidas/química , Catálise , Ferro/química , Óxido Nítrico/síntese química , Nitritos/química , Oxirredução , Rutênio/química , S-Nitrosotióis/síntese química
6.
RSC Adv ; 11(35): 21359-21366, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35478799

RESUMO

The reduction of molecular oxygen (O2) and hydrogen peroxide (H2O2) by [RuII(edta)(pz)]2- (edta4- = ethylenediaminetetraacetate; pz = pyrazine) has been studied spectrophotometrically and kinetically in aqueous solution. Exposure of the aqua-analogue [RuII(edta)(H2O)]2- to O2 and H2O2 resulted in the formation of [RuIII(edta)(H2O)]- species, with subsequent formation of the corresponding RuV[double bond, length as m-dash]O complex. A working mechanism for the O2 and H2O2 reduction reactions mediated by the RuII(edta) complexes is proposed. The role of the coordinated water molecule (by its absence or presence in the primary coordination sphere) in controlling the mechanistic pathways, outer-sphere or inner-sphere, is discussed.

7.
Adv Clin Exp Med ; 29(9): 1021-1028, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-33001589

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is transmitted through respiratory droplets and contact routes, hence the demand for personal protective equipment (PPE) has increased during the outbreak of coronavirus disease 2019 (COVID-19). Among the most noticeable shortages was the lack of face shields. The urgent demand for PPE induced interdisciplinary cooperation to overcome the shortages, and additive manufacturing proved to be ideal for the crisis situation. OBJECTIVES: To investigate the possibilities of implementing additive manufacturing technologies in the interventional fabrication of protective face shields for medical staff. MATERIAL AND METHODS: An Ender 3 Pro 3D printer was used to print headbands and Cura 4.4 was chosen as the slicing software. Open source face shield designs were downloaded as standard tessellation language (STL) files and compared. Only models with scientific support were taken under consideration. RESULTS: The mean time for producing the headbands tested ranged from 59 min to almost 3 h, depending on the design. After setting up our low budget printer and choosing the Prusa RC 3 protective face shield as the main product, we were able to fabricate about 30 face shields per week at a cost of about €1 each. During 4 weeks, 126 face shields were produced and delivered to various hospital wards, which substantially eased the shortages. CONCLUSIONS: Additive manufacturing enables immediate responses to needs in emergency situations, and allows for mass production of personal protective equipment in a short time due the rapid exchange of data among printer users. Despite the unregulated legal situation and insufficient scientific evidence, such protective equipment has been approved by clinicians and is currently used by medical personnel around the world.


Assuntos
Betacoronavirus , Infecções por Coronavirus , Pandemias , Pneumonia Viral , COVID-19 , Infecções por Coronavirus/prevenção & controle , Humanos , Máscaras , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Equipamentos de Proteção , SARS-CoV-2
8.
Inorg Chem ; 59(20): 14944-14953, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33001639

RESUMO

Application of organometallic ruthenium(II) arene complexes has been successful for the modulation of cellular redox processes via their interaction with species such as formate to control the NAD+/NADH balance in cells. Here we present the first evidence that similar effects can be reached with the application of a nonorganometallic ruthenium(II) polypyridyl complex. Kinetic studies performed demonstrate the ability of [RuII(terpy)(en)(H2O/EtOH)]2+ in water/ethanol (1:9, v/v) solution, where terpy = 2,2':6',2″-terpyridine and en = ethylenediamine, to catalyze the reduction of the NAD+ coenzyme to NADH in the presence of formate as hydride transfer source. In this case, terpy instead of arene is responsible for the labilization of coordinated solvent. The suggested catalytic cycle begins with the fast anation of the [RuII(terpy)(en)(H2O/EtOH)]2+ complex by formate. This is followed by the rate-determining formate-catalyzed decarboxylation of the generated ruthenium(II) formato complex to form [RuII(terpy)(en)H]+. Rapid hydride transfer to NAD+ from [RuII(terpy)(en)H]+ to form NADH and to regenerate the starting ruthenium(II) solvato complex, closes the overall catalytic cycle.


Assuntos
Complexos de Coordenação/química , Formiatos/química , Hidrogênio/química , NAD/química , Piridinas/química , Boroidretos/química , Catálise , Cinética , Modelos Químicos , Oxirredução , Rutênio/química
9.
Dalton Trans ; 49(15): 4599-4659, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32162632

RESUMO

This review covers highlights of the work performed in the van Eldik group on inorganic reaction mechanisms over the past two decades in the form of a personal journey. Topics that are covered include, from NO to HNO chemistry, peroxide activation in model porphyrin and enzymatic systems, the wonder-world of RuIII(edta) chemistry, redox chemistry of Ru(iii) complexes, Ru(ii) polypyridyl complexes and their application, relevant physicochemical properties and reaction mechanisms in ionic liquids, and mechanistic insight from computational chemistry. In each of these sections, typical examples of mechanistic studies are presented in reference to related work reported in the literature.

10.
Dalton Trans ; 46(31): 10264-10280, 2017 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-28737821

RESUMO

The crystal structures of [RuII(terpy)(bipy)Cl]Cl·2H2O and [RuII(terpy)(en)Cl]Cl·3H2O, where terpy = 2,2':6',2''-terpyridine, bipy = 2,2'-bipyridine and en = ethylenediamine, were determined and compared to the structure of the complexes in solution obtained by multi-nuclear NMR spectroscopy in DMSOd-6 as a solvent. In aqueous solution, both chlorido complexes aquate fully to the corresponding aqua complexes, viz. [RuII(terpy)(bipy)(H2O)]2+ and [RuII(terpy)(en)(H2O)]2+, within ca. 2 h and ca. 2 min at 37 °C, respectively. The spontaneous aquation reactions can only be suppressed by chloride concentrations as high as 2 to 4 M, i.e. concentrations much higher than that found in human blood. The corresponding aqua complexes are characterized by pKa values of ca. 10 and 11, respectively, which suggest a more labile coordinated water molecule in the case of the [RuII(terpy)(en)(H2O)]2+ complex. Substitution reactions of the aqua complexes with chloride, cyanide and thiourea show that the [RuII(terpy)(en)(H2O)]2+ complex is 30-60 times more labile than the [RuII(terpy)(bipy)(H2O)]2+ complex at 25 °C. Water exchange reactions for both complexes were studied by 17O-NMR and DFT calculations (B3LYP(CPCM)/def2tzvp//B3LYP/def2svp and ωB97XD(CPCM)/def2tzvp//B3LYP/def2svp). Thermal and pressure activation parameters for the water exchange and ligand substitution reactions support the operation of an associative interchange (Ia) process. The difference in reactivity between these complexes can be accounted for in terms of π-back bonding effects of the terpy and bipy ligands and steric hindrance on the bipy complex. Consequences for eventual biological application of the chlorido complexes are discussed.

11.
Ginekol Pol ; 87(10): 722-726, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27958626

RESUMO

Recurrent miscarriage is an important problem in reproductive health, which affects 1-5% of couples. The aim of this article is to summarize current knowledge on the genetic causes of recurrent miscarriage. It presents the most common parental genetic disorders (karyotype abnormalities, recessive diseases carrier status, dominant diseases and thrombophilia) connected with recurrent pregnancy loss, as well as research into other possible genetic causes. This review also sets out to demonstrate changes in the embryonic/fetal genome that may lead to abortions, and discusses the methods used to assess miscarried material, together with their advantages and disadvantages. Knowledge of the genetic background of miscarriages is important for prognosis, as well as the potential planning of prenatal diagnostics in subsequent pregnancies.


Assuntos
Aborto Habitual/genética , Portador Sadio , Doenças Genéticas Inatas/complicações , Aborto Habitual/etiologia , Adulto , Aberrações Cromossômicas , Feminino , Humanos , Cariótipo , Idade Materna , Fenótipo , Gravidez , Cuidado Pré-Natal , Diagnóstico Pré-Natal , Prognóstico , Fatores de Risco , Ultrassonografia Pré-Natal
12.
Water Environ Res ; 81(9): 896-906, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19860146

RESUMO

Food industry effluents are considered a potential alternative for methanol when seeking external carbon sources to enhance denitrification in municipal wastewater treatment plants (WWTPs). The aim of this study was to determine the immediate effects of dosing different carbon sources on the denitrification capability of process biomass from the Wschod WWTP in Gdansk (northern Poland). Five carbon sources, including settled wastewater, methanol, and three industrial effluents (distillery, brewery, and fish-pickling process) were tested in two kinds of batch experiments. The acclimation period of biomass to methanol also was investigated in bench-scale systems. During the conventional batch experiments, with the industrial effluents, the observed nitrate utilization rates (NURs) ranged from 2.4 to 6.0 g N/(kg VSS x h), which were only slightly lower than the rates associated with the use of the readily biodegradable fraction in the municipal (settled) wastewater [4.6 to 7.8 g N/(kg VSS x h)]. The conventional NURs observed with methanol and non-acclimated process biomass were low [i.e., 0.4 to 1.5 g N/(kg VSS x h)], and a minimum 2-week acclimation period of biomass to methanol in the bench-scale systems was needed to reach the level of 4.0 g N/(kg VSS x h). In other experiments, dosing the distillery and fish-pickling effluents at the beginning of the anoxic phase (preceded by the anaerobic phase) resulted in considerably higher (over 20%) NURs compared with the same experiments with the other carbon sources.


Assuntos
Carbono/química , Nitrogênio/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Água/química , Indústria Alimentícia , Resíduos Industriais , Projetos Piloto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA