Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Nano ; 17(23): 23626-23636, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37988035

RESUMO

Spin-orbit coupling (SOC) is the interaction between electron's spin and orbital motion, which could realize a charge-to-spin current conversion and enable an innovative method to switch the magnetization by spin-orbit torque (SOT). Varied techniques have been developed to manipulate and improve the SOT, but the role of the orbit degree of freedom, which should have a crucial bearing on the SOC and SOT, is still confusing. Here, we find that the charge-to-spin current conversion and SOT in W3O8-δ/(La, Sr)MnO3 could be produced or eliminated by ionic liquid gating. Through tuning the preferential occupancy of Mn/W-d electrons from the in-plane (dx2-y2) to out-of-plane (d3z2-r2) orbit, the SOT damping-like field efficiency is nearly doubled due to the enhanced spin Hall effect and interfacial Rashba-Edelstein effect. These findings not only offer intriguing opportunities to control the SOT for high-efficient spintronic devices but also could be a fundamental step toward spin-orbitronics in the future.

2.
Nano Lett ; 23(13): 5927-5933, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37345875

RESUMO

Electrical control of magnetic properties is crucial for low-energy memory and logic spintronic devices. We find that the magnetic properties of ferrimagnetic CoGd can be altered through ionic liquid gating. Gate voltages manipulate the opposite magnetic moments in Co and Gd sublattices and induce a giant magnetic compensation temperature change of more than 200 K in Pt/CoGd/Pt heterostructures. The electrically controlled dominant magnetic sublattice allows voltage-induced magnetization switching. Both experiments and theoretical calculations demonstrate that the significant modulations of compensation temperature are relevant to the reduced Gd moments due to the presence of hydrogen ions at positive voltages as well as the enhanced Co moments and reduced Gd moments due to the injection of oxygen ions at negative voltages. These findings expand the possibilities for all-electric and reversible magnetization control in the field of spintronics.

3.
ACS Appl Mater Interfaces ; 15(24): 29525-29534, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37291859

RESUMO

Reversal of magnetization via current-induced spin-orbit torque (SOT) is one of the core issues in spintronics. However, an in-plane assistant field is usually required for the deterministic switching of a perpendicularly magnetized system. Additionally, the efficiency of SOT is low, which is detrimental to device applications. This study achieved a reversible and non-volatile control of the critical current for magnetization switching and spin Hall efficiency in the TaN/W/Pt/Co/Pt/TaN heterostructures by ionic liquid (IL) gating-induced hydrogen ion adsorption and desorption in the upper Pt layer. Furthermore, the thinning of the Pt and TaN capping layers activated the oxygen ion migration toward the Co layer under IL gating, resulting in an exchange bias field and allowing field-free magnetization switching and Boolean logic operation. The results of this study offer an intriguing opportunity to promote the development of SOT-based spintronic devices from the perspective of iontronics with low energy dissipation.

4.
Adv Mater ; 35(14): e2207988, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36630709

RESUMO

Generation and manipulation of spin current are the cores of spintronic devices, which are intensely pursued. Heavy metals with strong spin-orbit coupling are commonly used for the generation of spin current, but are incompatible with the mass production of devices, and the polarization of spin current is limited to be in-plane. Here, it is shown that the spin current with strong out-of-plane polarization component can be generated and transmitted in Ni81 Fe19 /Cu-CuOx bilayer with sideways and top oxidizations. The charge-to-spin current conversion efficiency can be enhanced through the spin currents consisting of both out-of-plane polarization (σz ) and in-plane polarization (σy ) induced by spin-vorticity coupling. Such a spin current is demonstrated to be closely related to the lateral oxidization gradient and can be controlled by changing the temperatures and times of annealing. The finding here provides a novel degree of freedom to produce and control the spin current in spintronic devices.

5.
ACS Nano ; 16(10): 16077-16084, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36130100

RESUMO

The manipulation of charge-to-spin current conversion and spin-orbit torque (SOT) is of great interest due to its profound physics and potential applications. Controlling the spin current through the electric field provides a perspective for highly efficient SOT devices. Here, we use H2O-doped ionic liquid gating to realize the reversible and nonvolatile manipulation of the spin Hall effect of Pt, and the spin Hall angle can be modulated by 48% within an accessible gate voltage range. The increase in the spin Hall angle is demonstrated to be caused by the adsorption of hydrogen ions on the Pt surface and the consequent enhancement of the spin Hall conductivity under positive voltage. Furthermore, the enhancement of the spin Hall angle is beneficial to reduce the critical current density for driving the domain wall motion. These results supply a method for the dynamic control of the charge-to-spin current conversion, which will promote the development of spintronic devices driven by electric fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA