Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Integr Environ Assess Manag ; 17(1): 95-109, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33064347

RESUMO

The population level is often the biological endpoint addressed in ecological risk assessments (ERAs). However, ERAs tend to ignore the metapopulation structure, which precludes an understanding of how population viability is affected by multiple stressors (e.g., toxicants and environmental conditions) at large spatial scales. Here we integrate metapopulation model simulations into a regional-scale, multiple stressors risk assessment (Bayesian network relative risk model [BN-RRM]) of organophosphate (OP) exposure, water temperature, and DO impacts on Chinook salmon (Oncorhynchus tshawytscha). A matrix metapopulation model was developed for spring Chinook salmon in the Yakima River Basin (YRB), Washington, USA, including 3 locally adapted subpopulations and hatchery fish that interact with those subpopulations. Three metapopulation models (an exponential model, a ceiling density-dependent model, and an exponential model without dispersal) were integrated into the BN-RRM to evaluate the effects of population model assumptions on risk calculations. Risk was defined as the percent probability that the abundance of a subpopulation would decline from their initial abundance (500 000). This definition of risk reflects the Puget Sound Partnership's management goal of achieving "no net loss" of Chinook abundance. The BN-RRM model results for projection year 20 showed that risk (in % probability) from OPs and environmental stressors was higher for the wild subpopulations-the American River (50.9%-97.7%) and Naches (39.8%-84.4%) spring Chinook-than for the hatchery population (CESRF 18.5%-46.5%) and the Upper Yakima subpopulation (21.5%-68.7%). Metapopulation risk was higher in summer (58.1%-68.7%) than in winter (33.6%-53.2%), and this seasonal risk pattern was conserved at the subpopulation level. To reach the management goal in the American River spring Chinook subpopulation, the water temperature conditions in the Lower Yakima River would need to decrease. We demonstrate that 1) relative risk can vary across a metapopulation's spatial range, 2) dispersal among patches impacts subpopulation abundance and risk, and 3) local adaptation within a salmon metapopulation can profoundly impact subpopulation responses to equivalent stressors. Integr Environ Assess Manag 2021;17:95-109. © 2020 SETAC.


Assuntos
Praguicidas , Salmão , Animais , Teorema de Bayes , Praguicidas/toxicidade , Risco , Rios , Washington
2.
Integr Environ Assess Manag ; 16(1): 28-42, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31379044

RESUMO

We estimated the risk to populations of Chinook salmon (Oncorhynchus tshawytscha) due to chlorpyrifos (CH), water temperature (WT), and dissolved oxygen concentration (DO) in 4 watersheds in Washington State, USA. The watersheds included the Nooksack and Skagit Rivers in the Northern Puget Sound, the Cedar River in the Seattle-Tacoma corridor, and the Yakima River, a tributary of the Columbia River. The Bayesian network relative risk model (BN-RRM) was used to conduct this ecological risk assessment and was modified to contain an acetylcholinesterase (AChE) inhibition pathway parameterized using data from CH toxicity data sets. The completed BN-RRM estimated risk at a population scale to Chinook salmon employing classical matrix modeling runs up to 50-y timeframes. There were 3 primary conclusions drawn from the model-building process and the risk calculations. First, the incorporation of an AChE inhibition pathway and the output from a population model can be combined with environmental factors in a quantitative fashion. Second, the probability of not meeting the management goal of no loss to the population ranges from 65% to 85%. Environmental conditions contributed to a larger proportion of the risk compared to CH. Third, the sensitivity analysis describing the influence of the variables on the predicted risk varied depending on seasonal conditions. In the summer, WT and DO were more influential than CH. In the winter, when the seasonal conditions are more benign, CH was the driver. Fourth, in order to reach the management goal, we calculated the conditions that would increase juvenile survival, adult survival, and a reduction in toxicological effects. The same process in this example should be applicable to the inclusion of multiple pesticides and to more descriptive population models such as those describing metapopulations. Integr Environ Assess Manag 2019;00:1-15. © 2019 SETAC.


Assuntos
Clorpirifos , Salmão , Poluentes Químicos da Água , Acetilcolinesterase , Animais , Teorema de Bayes , Clorpirifos/toxicidade , Oxigênio/química , Medição de Risco , Rios , Temperatura , Washington , Água , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA