Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Genes (Basel) ; 12(9)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34573442

RESUMO

The modulation of dynamic histone acetylation states is key for organizing chromatin structure and modulating gene expression and is regulated by histone acetyltransferase (HAT) and histone deacetylase (HDAC) enzymes. The mammalian SIRT6 protein, a member of the Class III HDAC Sirtuin family of NAD+-dependent enzymes, plays pivotal roles in aging, metabolism, and cancer biology. Through its site-specific histone deacetylation activity, SIRT6 promotes chromatin silencing and transcriptional regulation of aging-associated, metabolic, and tumor suppressive gene expression programs. ATP citrate lyase (ACLY) is a nucleo-cytoplasmic enzyme that produces acetyl coenzyme A (acetyl-CoA), which is the required acetyl donor for lysine acetylation by HATs. In addition to playing a central role in generating cytosolic acetyl-CoA for de novo lipogenesis, a growing body of work indicates that ACLY also functions in the nucleus where it contributes to the nutrient-sensitive regulation of nuclear acetyl-CoA availability for histone acetylation in cancer cells. In this study, we have identified a novel function of SIRT6 in controlling nuclear levels of ACLY and ACLY-dependent tumor suppressive gene regulation. The inactivation of SIRT6 in cancer cells leads to the accumulation of nuclear ACLY protein and increases nuclear acetyl-CoA pools, which in turn drive locus-specific histone acetylation and the expression of cancer cell adhesion and migration genes that promote tumor invasiveness. Our findings uncover a novel mechanism of SIRT6 in suppressing invasive cancer cell phenotypes and identify acetyl-CoA responsive cell migration and adhesion genes as downstream targets of SIRT6.


Assuntos
ATP Citrato (pro-S)-Liase/metabolismo , Histonas/metabolismo , Neoplasias/patologia , Sirtuínas/metabolismo , ATP Citrato (pro-S)-Liase/genética , Acetilcoenzima A/metabolismo , Acetilação , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Regulação da Expressão Gênica , Células HEK293 , Humanos , Neoplasias/etiologia , Neoplasias/metabolismo , Fenótipo , Sirtuínas/genética
2.
Nature ; 590(7846): 504-508, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33536620

RESUMO

Amplification of chromosomal region 8p11-12 is a common genetic alteration that has been implicated in the aetiology of lung squamous cell carcinoma (LUSC)1-3. The FGFR1 gene is the main candidate driver of tumorigenesis within this region4. However, clinical trials evaluating FGFR1 inhibition as a targeted therapy have been unsuccessful5. Here we identify the histone H3 lysine 36 (H3K36) methyltransferase NSD3, the gene for which is located in the 8p11-12 amplicon, as a key regulator of LUSC tumorigenesis. In contrast to other 8p11-12 candidate LUSC drivers, increased expression of NSD3 correlated strongly with its gene amplification. Ablation of NSD3, but not of FGFR1, attenuated tumour growth and extended survival in a mouse model of LUSC. We identify an LUSC-associated variant NSD3(T1232A) that shows increased catalytic activity for dimethylation of H3K36 (H3K36me2) in vitro and in vivo. Structural dynamic analyses revealed that the T1232A substitution elicited localized mobility changes throughout the catalytic domain of NSD3 to relieve auto-inhibition and to increase accessibility of the H3 substrate. Expression of NSD3(T1232A) in vivo accelerated tumorigenesis and decreased overall survival in mouse models of LUSC. Pathological generation of H3K36me2 by NSD3(T1232A) reprograms the chromatin landscape to promote oncogenic gene expression signatures. Furthermore, NSD3, in a manner dependent on its catalytic activity, promoted transformation in human tracheobronchial cells and growth of xenografted human LUSC cell lines with amplification of 8p11-12. Depletion of NSD3 in patient-derived xenografts from primary LUSCs containing NSD3 amplification or the NSD3(T1232A)-encoding variant attenuated neoplastic growth in mice. Finally, NSD3-regulated LUSC-derived xenografts were hypersensitive to bromodomain inhibition. Thus, our work identifies NSD3 as a principal 8p11-12 amplicon-associated oncogenic driver in LUSC, and suggests that NSD3-dependency renders LUSC therapeutically vulnerable to bromodomain inhibition.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/química , Histonas/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteínas Nucleares/metabolismo , Animais , Biocatálise , Carcinogênese/genética , Carcinoma de Células Escamosas/genética , Feminino , Histona-Lisina N-Metiltransferase/deficiência , Histona-Lisina N-Metiltransferase/genética , Humanos , Neoplasias Pulmonares/genética , Masculino , Metilação , Camundongos , Modelos Moleculares , Mutação , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/deficiência , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Cell Rep ; 34(3): 108638, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33472068

RESUMO

Histone acetylation levels are regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs) that antagonistically control the overall balance of this post-translational modification. HDAC inhibitors (HDACi) are potent agents that disrupt this balance and are used clinically to treat diseases including cancer. Despite their use, little is known about their effects on chromatin regulators, particularly those that signal through lysine acetylation. We apply quantitative genomic and proteomic approaches to demonstrate that HDACi robustly increases a low-abundance histone 4 polyacetylation state, which serves as a preferred binding substrate for several bromodomain-containing proteins, including BRD4. Increased H4 polyacetylation occurs in transcribed genes and correlates with the targeting of BRD4. Collectively, these results suggest that HDAC inhibition functions, at least in part, through expansion of a rare histone acetylation state, which then retargets lysine-acetyl readers associated with changes in gene expression, partially mimicking the effect of bromodomain inhibition.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Inibidores de Histona Desacetilases/uso terapêutico , Histonas/metabolismo , Fatores de Transcrição/metabolismo , Acetilação , Inibidores de Histona Desacetilases/farmacologia , Humanos
4.
Sci Rep ; 10(1): 17425, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33060621

RESUMO

The tumor suppressor adenomatous polyposis coli (APC) is frequently mutated in colorectal cancers. APC and Axin are core components of a destruction complex that scaffolds GSK3ß and CK1 to earmark ß-catenin for proteosomal degradation. Disruption of APC results in pathologic stabilization of ß-catenin and oncogenesis. However, the molecular mechanism by which APC promotes ß-catenin degradation is unclear. Here, we find that the intrinsically disordered region (IDR) of APC, which contains multiple ß-catenin and Axin interacting sites, undergoes liquid-liquid phase separation (LLPS) in vitro. Expression of the APC IDR in colorectal cells promotes Axin puncta formation and ß-catenin degradation. Our results support the model that multivalent interactions between APC and Axin drives the ß-catenin destruction complex to form biomolecular condensates in cells, which concentrate key components to achieve high efficient degradation of ß-catenin.


Assuntos
Proteína Axina/metabolismo , Genes APC , beta Catenina/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Humanos , Proteólise
5.
Sci Rep ; 9(1): 19176, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31844103

RESUMO

Mammalian Sirtuin 6 (Sirt6) is an NAD+-dependent protein deacylase regulating metabolism and chromatin homeostasis. Sirt6 activation protects against metabolic and aging-related diseases, and Sirt6 inhibition is considered a cancer therapy. Available Sirt6 modulators show insufficient potency and specificity, and even partially contradictory Sirt6 effects were reported for the plant flavone quercetin. To understand Sirt6 modulation by quercetin-based compounds, we analysed their binding and activity effects on Sirt6 and other Sirtuin isoforms and solved crystal structures of compound complexes with Sirt6 and Sirt2. We find that quercetin activates Sirt6 via the isoform-specific binding site for pyrrolo[1,2-a]quinoxalines. Its inhibitory effect on other isoforms is based on an alternative binding site at the active site entrance. Based on these insights, we identified isoquercetin as a ligand that can discriminate both sites and thus activates Sirt6 with increased specificity. Furthermore, we find that quercetin derivatives that inhibit rather than activate Sirt6 exploit the same general Sirt6 binding site as the activators, identifying it as a versatile allosteric site for Sirt6 modulation. Our results thus provide a structural basis for Sirtuin effects of quercetin-related compounds and helpful insights for Sirt6-targeted drug development.


Assuntos
Quercetina/química , Quercetina/farmacologia , Sirtuínas/antagonistas & inibidores , Sirtuínas/metabolismo , Acetilação , Sítios de Ligação , Cristalografia por Raios X , Humanos , Ligantes , Modelos Moleculares , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/metabolismo , Quercetina/análogos & derivados , Sirtuínas/química , Relação Estrutura-Atividade
6.
Sci Rep ; 9(1): 14226, 2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31578417

RESUMO

Covalent post-translational modification (PTM) of proteins with acyl groups of various carbon chain-lengths regulates diverse biological processes ranging from chromatin dynamics to subcellular localization. While the YEATS domain has been found to be a prominent reader of acetylation and other short acyl modifications, whether additional acyl-lysine reader domains exist, particularly for longer carbon chains, is unclear. Here, we employed a quantitative proteomic approach using various modified peptide baits to identify reader proteins of various acyl modifications. We discovered that proteins harboring HEAT and ARM repeats bind to lysine myristoylated peptides. Recombinant HEAT and ARM repeats bind to myristoylated peptides independent of the peptide sequence or the position of the myristoyl group. Indeed, HEAT and ARM repeats bind directly to medium- and long-chain free fatty acids (MCFA and LCFA). Lipidomic experiments suggest that MCFAs and LCFAs interact with HEAT and ARM repeat proteins in mammalian cells. Finally, treatment of cells with exogenous MCFAs and inhibitors of MCFA-CoA synthases increase the transactivation activity of the ARM repeat protein ß-catenin. Taken together, our results suggest an unappreciated role for fatty acids in the regulation of proteins harboring HEAT or ARM repeats.


Assuntos
Ácidos Graxos/metabolismo , Sequências Repetitivas de Aminoácidos , Acilação , Linhagem Celular , Cromatografia Gasosa , Cromatografia Líquida de Alta Pressão , Ontologia Genética , Humanos , Lipidômica/métodos , Lisina/química , Ácido Mirístico/química , Peptídeos/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Espectrometria de Massas em Tandem , beta Catenina/química , beta Catenina/metabolismo
7.
J Am Chem Soc ; 141(6): 2462-2473, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30653310

RESUMO

Using an engineered pyrrolysyl-tRNA synthetase mutant together with tRNACUAPyl, we have genetically encoded Nε-(7-azidoheptanoyl)-l-lysine (AzHeK) by amber codon in Escherichia coli for recombinant expression of a number of AzHeK-containing histone H3 proteins. We assembled in vitro acyl-nucleosomes from these recombinant acyl-H3 histones. All these acyl-nucleosomes contained an azide functionality that allowed quick click labeling with a strained alkyne dye for in-gel fluorescence analysis. Using these acyl-nucleosomes as substrates and click labeling as a detection method, we systematically investigated chromatin deacylation activities of SIRT7, a class III NAD+-dependent histone deacylase with roles in aging and cancer biology. Besides confirming the previously reported histone H3K18 deacylation activity, our results revealed that SIRT7 has an astonishingly high activity to catalyze deacylation of H3K36 and is also catalytically active to deacylate H3K37. We further demonstrated that this H3K36 deacylation activity is nucleosome dependent and can be significantly enhanced when appending the acyl-nucleosome substrate with a short double-stranded DNA that mimics the bridging DNA between nucleosomes in native chromatin. By overexpressing SIRT7 in human cells, we verified that SIRT7 natively removes acetylation from histone H3K36. Moreover, SIRT7-deficient cells exhibited H3K36 hyperacetylation in whole cell extracts, at rDNA sequences in nucleoli, and at select SIRT7 target loci, demonstrating the physiologic importance of SIRT7 in determining endogenous H3K36 acetylation levels. H3K36 acetylation has been detected at active gene promoters, but little is understood about its regulation and functions. Our findings establish H3K36 as a physiologic substrate of SIRT7 and implicate this modification in potential SIRT7 pathways in heterochromatin silencing and genomic stability.


Assuntos
Cromatina/metabolismo , Sirtuínas/metabolismo , Acilação , Biocatálise , Domínio Catalítico , Química Click , Histonas/química , Histonas/metabolismo , Lisina/metabolismo , Modelos Moleculares , Nucleossomos/metabolismo , Sirtuínas/química
8.
J Biol Chem ; 293(28): 11242-11250, 2018 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-29728458

RESUMO

In the yeast Saccharomyces cerevisiae, genomic instability in rDNA repeat sequences is an underlying cause of cell aging and is suppressed by the chromatin-silencing factor Sir2. In humans, rDNA instability is observed in cancers and premature aging syndromes, but its underlying mechanisms and functional consequences remain unclear. Here, we uncovered a pivotal role of sirtuin 7 (SIRT7), a mammalian Sir2 homolog, in guarding against rDNA instability and show that this function of SIRT7 protects against senescence in primary human cells. We found that, mechanistically, SIRT7 is required for association of SNF2H (also called SMARCA5, SWI/SNF-related matrix-associated actin-dependent regulator of chromatin, subfamily A, member 5), a component of the nucleolar heterochromatin-silencing complex NoRC, with rDNA sequences. Defective rDNA-heterochromatin silencing in SIRT7-deficient cells unleashed rDNA instability, with excision and loss of rDNA gene copies, which in turn induced acute senescence. Mounting evidence indicates that accumulation of senescent cells significantly contributes to tissue dysfunction in aging-related pathologies. Our findings identify rDNA instability as a driver of mammalian cellular senescence and implicate SIRT7-dependent heterochromatin silencing in protecting against this process.


Assuntos
Neoplasias Ósseas/patologia , Senescência Celular , DNA Ribossômico/genética , Epigênese Genética , Instabilidade Genômica , Osteossarcoma/patologia , Sirtuínas/metabolismo , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Osteossarcoma/genética , Osteossarcoma/metabolismo , Sirtuínas/genética , Transcrição Gênica , Células Tumorais Cultivadas
9.
Angew Chem Int Ed Engl ; 56(4): 1007-1011, 2017 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-27990725

RESUMO

Sirtuins are protein deacylases regulating metabolism and stress responses, and are implicated in aging-related diseases. Small molecule activators for the human sirtuins Sirt1-7 are sought as chemical tools and potential therapeutics, such as for cancer. Activators are available for Sirt1 and exploit its unique N-terminus, whereas drug-like activators for Sirt2-7 are lacking. We synthesized and screened pyrrolo[1,2-a]quinoxaline derivatives, yielding the first synthetic Sirt6 activators. Biochemical assays show direct, substrate-independent compound binding to the Sirt6 catalytic core and potent activation of Sirt6-dependent deacetylation of peptide substrates and complete nucleosomes. Crystal structures of Sirt6/activator complexes reveal that the compounds bind to a Sirt6-specific acyl channel pocket and identify key interactions. Our results establish potent Sirt6 activation with small molecules and provide a structural basis for further development of Sirt6 activators as tools and therapeutics.


Assuntos
Pirróis/metabolismo , Quinoxalinas/metabolismo , Sirtuínas/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Humanos , Modelos Moleculares , Estrutura Molecular , Pirróis/química , Quinoxalinas/química , Sirtuínas/química , Bibliotecas de Moléculas Pequenas/química
10.
Trends Endocrinol Metab ; 28(3): 168-185, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27836583

RESUMO

SIRT6, a member of the Sirtuin family of NAD+-dependent enzymes, has established roles in chromatin signaling and genome maintenance. Through these functions, SIRT6 protects against aging-associated pathologies including metabolic disease and cancer, and can promote longevity in mice. Research from the past few years revealed that SIRT6 is a complex enzyme with multiple substrates and catalytic activities, and uncovered novel SIRT6 functions in the maintenance of organismal health span. Here, we review these new discoveries and models of SIRT6 biology in four areas: heterochromatin stabilization and silencing; stem cell biology; cancer initiation and progression; and regulation of metabolic homeostasis. We discuss the possible implications of these findings for therapeutic interventions in aging and aging-related disease processes.


Assuntos
Envelhecimento/fisiologia , Sirtuínas/metabolismo , Envelhecimento/metabolismo , Animais , Cromatina/genética , Cromatina/metabolismo , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Sirtuínas/genética
11.
EMBO J ; 35(14): 1483-5, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27302089
12.
Nat Struct Mol Biol ; 23(5): 434-40, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27043296

RESUMO

Pericentric heterochromatin silencing at mammalian centromeres is essential for mitotic fidelity and genomic stability. Defective pericentric silencing has been observed in senescent cells, aging tissues, and mammalian tumors, but the underlying mechanisms and functional consequences of these defects are unclear. Here, we uncover an essential role of the human SIRT6 enzyme in pericentric transcriptional silencing, and we show that this function protects against mitotic defects, genomic instability, and cellular senescence. At pericentric heterochromatin, SIRT6 promotes deacetylation of a new substrate, residue K18 of histone H3 (H3K18), and inactivation of SIRT6 in cells leads to H3K18 hyperacetylation and aberrant accumulation of pericentric transcripts. Strikingly, depletion of these transcripts through RNA interference rescues the mitotic and senescence phenotypes of SIRT6-deficient cells. Together, our findings reveal a new function for SIRT6 and regulation of acetylated H3K18 at heterochromatin, and demonstrate the pathogenic role of deregulated pericentric transcription in aging- and cancer-related cellular dysfunction.


Assuntos
Cromatina/metabolismo , Histonas/metabolismo , Sirtuínas/fisiologia , Acetilação , Linhagem Celular Tumoral , Senescência Celular , Expressão Gênica , Inativação Gênica , Células HEK293 , Histonas/química , Humanos , Mitose , Processamento de Proteína Pós-Traducional , Sirtuínas/química
13.
Nat Rev Mol Cell Biol ; 17(5): 308-21, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26956196

RESUMO

Mitochondrial dysfunction is a hallmark of ageing, and mitochondrial maintenance may lead to increased healthspan. Emerging evidence suggests a crucial role for signalling from the nucleus to mitochondria (NM signalling) in regulating mitochondrial function and ageing. An important initiator of NM signalling is nuclear DNA damage, which accumulates with age and may contribute to the development of age-associated diseases. DNA damage-dependent NM signalling constitutes a network that includes nuclear sirtuins and controls genomic stability and mitochondrial integrity. Pharmacological modulation of NM signalling is a promising novel approach for the prevention and treatment of age-associated diseases.


Assuntos
Envelhecimento , Dano ao DNA , Mitocôndrias/fisiologia , Animais , Apoptose , Núcleo Celular/genética , Reparo do DNA , Instabilidade Genômica , Humanos , Mitofagia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
14.
Nat Struct Mol Biol ; 22(4): 275-7, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25837871

RESUMO

Circadian regulation of epigenetic chromatin marks drives daily transcriptional oscillation of thousands of genes and is intimately linked to cellular metabolism and bioenergetics. New work links circadian fluctuations in the activity of the SIRT1 deacetylase, a sensor of the cellular energy state, to histone-methylation changes and the circadian expression of clock-controlled genes.


Assuntos
Relógios Circadianos/genética , Histonas/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , NAD/fisiologia , Sirtuína 1/fisiologia , Animais
15.
Sci Rep ; 5: 9841, 2015 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-25923013

RESUMO

Metastasis is responsible for over 90% of cancer-associated mortality. In epithelial carcinomas, a key process in metastatic progression is the epigenetic reprogramming of an epithelial-to-mesenchymal transition-like (EMT) change towards invasive cellular phenotypes. In non-epithelial cancers, different mechanisms must underlie metastatic change, but relatively little is known about the factors involved. Here, we identify the chromatin regulatory Sirtuin factor SIRT7 as a key regulator of metastatic phenotypes in both epithelial and mesenchymal cancer cells. In epithelial prostate carcinomas, high SIRT7 levels are associated with aggressive cancer phenotypes, metastatic disease, and poor patient prognosis, and depletion of SIRT7 can reprogram these cells to a less aggressive phenotype. Interestingly, SIRT7 is also important for maintaining the invasiveness and metastatic potential of non-epithelial sarcoma cells. Moreover, SIRT7 inactivation dramatically suppresses cancer cell metastasis in vivo, independent of changes in primary tumor growth. Mechanistically, we also uncover a novel link between SIRT7 and its family member SIRT1, providing the first demonstration of direct interaction and functional interplay between two mammalian sirtuins. Together with previous work, our findings highlight the broad role of SIRT7 in maintaining the metastatic cellular phenotype in diverse cancers.


Assuntos
Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/genética , Metástase Neoplásica/genética , Metástase Neoplásica/patologia , Sarcoma/genética , Sirtuínas/genética , Linhagem Celular Tumoral , Cromatina/genética , Progressão da Doença , Epigênese Genética/genética , Humanos , Fenótipo , Prognóstico , Sarcoma/patologia
16.
Clin Cancer Res ; 20(7): 1741-6, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24536059

RESUMO

SIRT7 belongs to the Sirtuin family of NAD-dependent enzymes, the members of which play diverse roles in aging, metabolism, and disease biology. Increased SIRT7 expression is observed in human cancers and growing evidence suggests important SIRT7 functions in fundamental cellular programs with an impact on oncogenic transformation and tumor biology. SIRT7 associates with chromatin, where it catalyzes selective deacetylation of lysine 18 on histone H3 (H3K18), an emerging epigenetic biomarker of aggressive tumors and poor clinical outcome in patients with cancer. Through H3K18 deacetylation at specific promoters, SIRT7 controls a tumor-suppressive gene expression program that stabilizes the transformed state of cancer cells. SIRT7 also orchestrates several molecular processes, including rRNA and tRNA synthesis, which ultimately promote the increased ribosome biogenesis necessary for tumor cell growth and proliferation. Remarkably, inactivation of SIRT7 can reverse the transformed phenotype of cancer cells and reduce their tumorigenicity in vivo. These findings place SIRT7 at the crossroads of chromatin signaling, metabolic, and tumor-regulatory pathways. Thus, SIRT7 is a promising pharmacologic target for epigenetic cancer therapy. The development of SIRT7 modulators may allow new therapeutic strategies that control tumor progression by reprogramming the chromatin landscape and biosynthetic machinery of cancer cells.


Assuntos
Carcinogênese/genética , Redes e Vias Metabólicas/genética , Neoplasias/genética , Sirtuínas/genética , Acetilação , Proliferação de Células , Cromatina/genética , Histonas/metabolismo , Humanos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Regiões Promotoras Genéticas , Transdução de Sinais/genética
17.
Cell Rep ; 5(3): 654-665, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-24210820

RESUMO

Nonalcoholic fatty liver disease is the most common chronic liver disorder in developed countries. Its pathogenesis is poorly understood, and therapeutic options are limited. Here, we show that SIRT7, an NAD(+)-dependent H3K18Ac deacetylase, functions at chromatin to suppress ER stress and prevent the development of fatty liver disease. SIRT7 is induced upon ER stress and is stabilized at the promoters of ribosomal proteins through its interaction with the transcription factor Myc to silence gene expression and to relieve ER stress. SIRT7-deficient mice develop chronic hepatosteatosis resembling human fatty liver disease. Myc inactivation or pharmacological suppression of ER stress alleviates fatty liver caused by SIRT7 deficiency. Importantly, SIRT7 suppresses ER stress and reverts the fatty liver disease in diet-induced obese mice. Our study identifies SIRT7 as a cofactor of Myc for transcriptional repression and delineates a druggable regulatory branch of the ER stress response that prevents and reverts fatty liver disease.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Fígado Gorduroso/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Sirtuínas/metabolismo , Animais , Feminino , Genes myc , Células HEK293 , Células Hep G2 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myc/genética , Sirtuínas/deficiência , Sirtuínas/genética , Transfecção
18.
Sci Rep ; 3: 3085, 2013 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-24169447

RESUMO

The chromatin regulatory factor SIRT6 plays pivotal roles in metabolism, tumor suppression, and aging biology. Despite the fundamental roles of SIRT6 in physiology and disease, only a handful of molecular and functional interactions of SIRT6 have been reported. Here, we characterize the SIRT6 interactome and identify 80+ novel SIRT6-interacting proteins. The discovery of these SIRT6-associations considerably expands knowledge of the SIRT6 interaction network, and suggests previously unknown functional interactions of SIRT6 in fundamental cellular processes. These include chromatin remodeling, mitotic chromosome segregation, protein homeostasis, and transcriptional elongation. Extended analysis of the SIRT6 interaction with G3BP1, a master stress response factor, uncovers an unexpected role and mechanism of SIRT6 in regulating stress granule assembly and cellular stress resistance.


Assuntos
Proteínas de Transporte/metabolismo , Mapas de Interação de Proteínas , Transdução de Sinais/genética , Sirtuínas/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , DNA Helicases , Células HEK293 , Células HeLa , Humanos , Camundongos , Proteínas de Ligação a Poli-ADP-Ribose , Ligação Proteica , Proteômica , RNA Helicases , Interferência de RNA , Proteínas com Motivo de Reconhecimento de RNA , RNA Interferente Pequeno , Sirtuínas/genética , Ubiquitina Tiolesterase/genética
19.
J Biol Chem ; 288(25): 18439-47, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23653361

RESUMO

Aging is known to be the single most important risk factor for multiple diseases. Sirtuin 6, or SIRT6, has recently been identified as a critical regulator of transcription, genome stability, telomere integrity, DNA repair, and metabolic homeostasis. A knockout mouse model of SIRT6 has displayed dramatic phenotypes of accelerated aging. In keeping with its role in aging, we demonstrated that human dermal fibroblasts (HDFs) from older human subjects were more resistant to reprogramming by classic Yamanaka factors than those from younger human subjects, but the addition of SIRT6 during reprogramming improved such efficiency in older HDFs substantially. Despite the importance of SIRT6, little is known about the molecular mechanism of its regulation. We show, for the first, time posttranscriptional regulation of SIRT6 by miR-766 and inverse correlation in the expression of this microRNA in HDFs from different age groups. Our results suggest that SIRT6 regulates miR-766 transcription via a feedback regulatory loop, which has implications for the modulation of SIRT6 expression in reprogramming of aging cells.


Assuntos
Envelhecimento/fisiologia , Reprogramação Celular/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Sirtuínas/fisiologia , Adolescente , Fatores Etários , Envelhecimento/genética , Células Cultivadas , Reprogramação Celular/genética , Análise por Conglomerados , Derme/citologia , Corpos Embrioides/metabolismo , Corpos Embrioides/fisiologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/fisiologia , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Células-Tronco Pluripotentes Induzidas/metabolismo , MicroRNAs/genética , Pessoa de Meia-Idade , Modelos Genéticos , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/fisiologia , Processamento Pós-Transcricional do RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sirtuínas/genética , Sirtuínas/metabolismo
20.
Mol Cell ; 50(3): 444-56, 2013 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-23583077

RESUMO

Lysine methylation of histone proteins regulates chromatin dynamics and plays important roles in diverse physiological and pathological processes. However, beyond histone proteins, the proteome-wide extent of lysine methylation remains largely unknown. We have engineered the naturally occurring MBT domain repeats of L3MBTL1 to serve as a universal affinity reagent for detecting, enriching, and identifying proteins carrying a mono- or dimethylated lysine. The domain is broadly specific for methylated lysine ("pan-specific") and can be applied to any biological system. We have used our approach to demonstrate that SIRT1 is a substrate of the methyltransferase G9a both in vitro and in cells, to perform proteome-wide detection and enrichment of methylated proteins, and to identify candidate in-cell substrates of G9a and the related methyltransferase GLP. Together, our results demonstrate a powerful new approach for global and quantitative analysis of methylated lysine, and they represent the first systems biology understanding of lysine methylation.


Assuntos
Lisina/genética , Lisina/metabolismo , Proteoma/genética , Proteoma/metabolismo , Animais , Linhagem Celular , Células HEK293 , Humanos , Insetos , Metilação , Estrutura Terciária de Proteína , Proteômica/métodos , Células Sf9 , Sirtuína 1/genética , Sirtuína 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA