Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Nano ; 16(12): 20946-20955, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36413764

RESUMO

Two-dimensional (2D) materials, featuring distinctive electronic and optical properties and dangling-bond-free surfaces, are promising for developing high-performance on-chip photodetectors in photonic integrated circuits. However, most of the previously reported devices operating in the photoconductive mode suffer from a high dark current or a low responsivity. Here, we demonstrate a MoTe2 p-i-n homojunction fabricated directly on a silicon photonic crystal (PC) waveguide, which enables on-chip photodetection with ultralow dark current, high responsivity, and fast response speed. The adopted silicon PC waveguide is electrically split into two individual back gates to selectively dope the top regions of the MoTe2 channel in p- or n-types. High-quality reconfigurable MoTe2 (p-i-n, n-i-p, n-i-n, p-i-p) homojunctions are realized successfully, presenting rectification behaviors with ideality factors approaching 1.0 and ultralow dark currents less than 90 pA. Waveguide-assisted MoTe2 absorption promises a sensitive photodetection in the telecommunication O-band from 1260 to 1340 nm, though it is close to MoTe2's absorption band-edge. A competitive photoresponsivity of 0.4 A/W is realized with a light on/off current ratio exceeding 104 and a record-high normalized photocurrent-to-dark-current ratio of 106 mW-1. The ultrasmall capacitance of p-i-n homojunction and high carrier mobility of MoTe2 promise a high dynamic response bandwidth close to 34.0 GHz. The proposed device geometry has the advantages of employing a silicon PC waveguide as the back gates to build a 2D material p-i-n homojunction directly and simultaneously to enhance light-2D material interaction. It provides a potential pathway to develop 2D material-based photodetectors, laser diodes, and electro-optic modulators on silicon photonic chips.

2.
Small ; 18(1): e2105684, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34741404

RESUMO

To develop methods to generate, manipulate, and detect plasmonic signals by electrical means with complementary metal-oxide-semiconductor (CMOS)-compatible materials is essential to realize on-chip electronic-plasmonic transduction. Here, electrically driven, CMOS-compatible electronic-plasmonic transducers with Al-AlOX -Cu tunnel junctions as the excitation source of surface plasmon polaritons (SPPs) and Si-Cu Schottky diodes as the detector of SPPs, connected via plasmonic strip waveguides of Cu, are demonstrated. Remarkably, the electronic-plasmonic transducers exhibit overall transduction efficiency of 1.85 ± 0.03%, five times higher than previously reported transducers with two tunnel junctions (metal-insulator-metal (MIM)-MIM transducers) where SPPs are detected based on optical rectification. The result establishes a new platform to convert electronic signals to plasmonic signals via electrical means, paving the way toward CMOS-compatible plasmonic components.

3.
Opt Express ; 27(14): 19815-19826, 2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31503736

RESUMO

Aluminum nitride on insulator (AlNOI) photonics platform has great potential for mid-infrared applications thanks to the large transparency window, piezoelectric property, and second-order nonlinearity of AlN. However, the deployment of AlNOI platform might be hindered by the high propagation loss. We perform thermal annealing study and demonstrate significant loss improvement in the mid-infrared AlNOI photonics platform. After thermal annealing at 400°C for 2 hours in ambient gas environment, the propagation loss is reduced by half. Bend loss and taper coupling loss are also investigated. The performance of multimode interferometer, directional coupler, and add/drop filter are improved in terms of insertion loss, quality factor, and extinction ratio. Fourier-transform infrared spectroscopy, Raman spectroscopy, and X-ray diffraction spectroscopy suggest the loss improvement is mainly attributed to the reduction of extinction coefficient in the silicon dioxide cladding. Apart from loss improvement, appropriate thermal annealing also helps in reducing thin film stress.

4.
J Phys Chem Lett ; 10(16): 4699-4705, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31364854

RESUMO

Plasmonic nanocavities enable extreme light-matter interaction by pushing light down to the nanoscale. The dipolar feature of bright modes allows coupling with the external excitation from free space but results in a radiating background, whereas nonradiating dark plasmon modes can hardly be excited. Here, we report for the first time on strong coupling between dark plasmon and anapole modes in a hybrid metal-dielectric nanostructure. With the aid of vanishing dipole characteristics of the anapole and dark plasmons, the hybrid modes exhibit minimum far-field scattering and maximum near-field enhancement. The dark mode coupling in the metal-dielectric nanostructure offers a nonradiating air cavity with greatly improved field enhancement in a broadened band, thus providing a background-free experimental platform for spectroscopic applications. The proposed approach to dark plasmon excitation, i.e., via anapole, may boost practical exploitation of dark plasmons by allowing linearly polarized light illumination and scalable arrays of individual nanostructure units.

5.
Opt Lett ; 44(1): 73-76, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30645551

RESUMO

We report an aluminum nitride on insulator platform for mid-infrared (MIR) photonics applications beyond 3 µm. Propagation loss and bending loss are studied, while functional devices such as directional couplers, multimode interferometers, and add/drop filters are demonstrated with high performance. The complementary metal-oxide-semiconductor-compatible aluminum nitride offers advantages ranging from a large transparency window, high thermal and chemical resistance, to piezoelectric tunability and three-dimensional integration capability. This platform can have synergy with other photonics platforms to enable novel applications for sensing and thermal imaging in MIR.

6.
Nanotechnology ; 30(7): 075204, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30523947

RESUMO

A plasmon-induced hot-electron photodetector based on silicon nanopillar array is developed. The nanostructure is fabricated by reactive ion etching with a monolayer of self-assembled polystyrene nanosphere in hexagonal close-packed lattice as the mask. Light absorption and hot-electron generation are mainly enhanced by the surface plasmon polaritons formed at the surface of the gold film on the nanopillar sidewalls. The photoresponse spans two telecom wavebands, viz. the range of 1250-1600 nm, and has a value of 2.5 mA W-1 at 1310 nm. The proposed silicon nanopillar-based hot-electron infrared detector has great potentials for device integration in silicon photonics relying on the economic large-area fabrication process.

7.
Opt Express ; 25(17): 20268-20273, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-29041709

RESUMO

The plasmonic characteristics of a periodic array of cavities in a silicon substrate are investigated for hot-electron photodetection. Resonances of cavity surface plasmons bound to air cavities and silicon cavities, and resonance of Bragg-surface plasmon polaritons are illustrated by the map of metal absorption. Hybrid modes formed with combination of these modes can strongly enhance absorption in metal and be exploited to optimize hot-electron photodetectors for single-band and dual-band detection at optical communication wavelengths.

8.
ACS Appl Mater Interfaces ; 9(37): 32359-32368, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28853275

RESUMO

Self-assembled growth of SrTi0.87Fe0.13O3-δ (STF)/ZnO vertical nanocomposite films by combinatorial pulsed laser deposition is described. The nanocomposite films form vertically aligned columnar epitaxial nanostructures on SrTiO3 substrates, in which the STF shows room-temperature magnetism. The magnetic properties are discussed in terms of strain states, oxygen vacancies, and microstructures. The nanocomposites exhibit magneto-photoluminescent coupling behavior that the near-band-edge emission of ZnO is shifted as a function of magnetic field.

9.
Nanotechnology ; 27(48): 485604, 2016 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-27811408

RESUMO

Vertically aligned, highly ordered, large area arrays of nanostructures are important building blocks for multifunctional devices. Here, ZnO nanorod arrays are selectively synthesized on Si substrates by a solution method within patterns created by nanoimprint lithography. The growth modes of two dimensional nucleation-driven wedding cakes and screw dislocation-driven spirals are inferred to determine the top end morphologies of the nanorods. Sub-bandgap photoluminescence of the nanorods is greatly enhanced by the manipulation of the hydrogen donors via a post-growth thermal treatment. Lasing behavior is facilitated in the nanorods with faceted top ends formed from wedding cakes growth mode. This work demonstrates the control of morphologies of oxide nanostructures in a large scale and the optimization of the optical performance.

10.
Sci Rep ; 6: 36352, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27808272

RESUMO

In this study we report the existence of novel ultraviolet (UV) and blue emission in rare-earth based perovskite NdGaO3 (NGO) and the systematic quench of the NGO photoluminescence (PL) by Ce doping. Study of room temperature PL was performed in both single-crystal and polycrystalline NGO (substrates and pellets) respectively. Several NGO pellets were prepared with varying Ce concentration and their room temperature PL was studied using 325 nm laser. It was found that the PL intensity shows a systematic quench with increasing Ce concentration. XPS measurements indicated that nearly 50% of Ce atoms are in the 4+ state. The PL quench was attributed to the novel concept of super hydrogenic dopant (SHD)", where each Ce4+ ion contributes an electron which forms a super hydrogenic atom with an enhanced Bohr radius, due to the large dielectric constant of the host. Based on the critical Ce concentration for complete quenching this SHD radius was estimated to be within a range of 0.85 nm and 1.15 nm whereas the predicted theoretical value of SHD radius for NdGaO3 is ~1.01 nm.

11.
ACS Appl Mater Interfaces ; 8(24): 15482-8, 2016 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-27213523

RESUMO

An individual light-emitting diode (LED) capable of emitting different colors of light under different bias conditions not only allows for compact device integration but also extends the functionality of the LED beyond traditional illumination and display. Herein, we report a color-switchable LED based on solution-grown n-type ZnO on p-GaN/n-GaN heterojunction. The LED emits red light with a peak centered at ∼692 nm and a full width at half-maximum of ∼90 nm under forward bias, while it emits green light under reverse bias. These two lighting colors can be switched repeatedly by reversing the bias polarity. The bias-polarity-switched dual-color LED enables independent control over the lighting color and brightness of each emission with two-terminal operation. The results offer a promising strategy toward transparent, miniaturized, and smart LEDs, which hold great potential in optoelectronics and optical communication.

12.
ACS Appl Mater Interfaces ; 7(8): 4737-43, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25650992

RESUMO

Vertically aligned ZnO nanorods were grown at 90 °C by both microwave synthesis and traditional heated water bath method on Si (100) substrate with a precoated ZnO nanoparticle seed layer. A detailed comparison in the morphology, defects, and optical properties of the ZnO nanorods grown by the two methods across the pH range of 10.07-10.9 for microwave synthesis and conventional heated water bath method was performed using scanning electron microscopy, photoluminescence, and X-ray photoelectron spectroscopy. The results show that the microwave route leads to more uniformly distributed nanorods with a lower density of native defects of oxygen interstitials and zinc vacancies. The microwave synthesis presents a promising new approach of fabricating metal oxide nanostructures and devices toward green applications.

13.
Chempluschem ; 80(8): 1298-1305, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31973305

RESUMO

A series of diketopyrrolopyrrole (DPP) and propylenedioxythiophene (ProDOT)-containing random copolymers with different donor-to-acceptor ratios is synthesized through Stille coupling polymerizations. The low-bandgap polymers display dark tones with colors ranging from magenta to blue, and reveal reversible colored-to-transmissive electrochromism in absorption/transmission-type devices with high optical contrasts (up to 48 and 77 % in the visible and near-infrared regions, respectively), modest switching speeds (a few to tens of seconds) and coloration efficiencies (267-574 cm2 C-1 ), as well as good long-term ambient redox stabilities. The structure-performance relationship of the polymers, in particular, the role of donor-to-acceptor ratio, is investigated, and it is shown that an increase in the amount of acceptor in the polymers leads to slower oxidative but faster reductive switching, accompanied with enhancement of the redox stability. In addition, further study on the influence of film thickness and film morphology reveals that devices with higher optical contrasts are attainable from thicker polymer films at the expense of switching speeds; films with high uniformity and connectedness together with open, loose structures at submicron to micron scale are favorable for achieving good electrochromic performance.

14.
Nanoscale Res Lett ; 8(1): 506, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24289275

RESUMO

We report on a method of fabricating variable patterns of periodic, high aspect ratio silicon nanostructures with sub-50-nm resolution on a wafer scale. The approach marries step-and-repeat nanoimprint lithography (NIL) and metal-catalyzed electroless etching (MCEE), enabling near perfectly ordered Si nanostructure arrays of user-defined patterns to be controllably and rapidly generated on a wafer scale. Periodic features possessing circular, hexagonal, and rectangular cross-sections with lateral dimensions down to sub-50 nm, in hexagonal or square array configurations and high array packing densities up to 5.13 × 107 structures/mm2 not achievable by conventional UV photolithography are fabricated using this top-down approach. By suitably tuning the duration of catalytic etching, variable aspect ratio Si nanostructures can be formed. As the etched Si pattern depends largely on the NIL mould which is patterned by electron beam lithography (EBL), the technique can be used to form patterns not possible with self-assembly methods, nanosphere, and interference lithography for replication on a wafer scale. Good chemical resistance of the nanoimprinted mask and adhesion to the Si substrate facilitate good pattern transfer and preserve the smooth top surface morphology of the Si nanostructures as shown in TEM. This approach is suitable for generating Si nanostructures of controlled dimensions and patterns, with high aspect ratio on a wafer level suitable for semiconductor device production.

15.
Appl Opt ; 52(16): 3698-702, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23736322

RESUMO

Enhancement of photoluminescence (PL) intensity from InGaAs/GaAs quantum well (QW) is achieved experimentally by coupling surface plasmon (SP) resonance with QW emission. The SP resonance is generated by fabricating a periodic Au nanodisk array on top of InGaAs/GaAs QW structure. A thin layer of SiO(2) between Au nanodisk and GaAs surface has been employed to achieve easy adjustment of the SP resonance. A 4.16 fold enhancement of PL intensity was observed. Theoretical simulation results match well with the experimental results and confirm that the PL emission is enhanced by SP coupling with the fabricated structure.

16.
Small ; 8(8): 1204-8, 1125, 2012 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-22334368

RESUMO

The fabrication of a p-shell/n-core coaxial nanorod ZnO homojunction light-emitting diode by inexpensive solution method is demonstrated. The p-type conductivity of the ZnO shell arises from the incorporation of potassium while the n-type conductivity of the core is due to unintentional doping.


Assuntos
Nanotecnologia/métodos , Nanotubos/química , Óxido de Zinco/química , Semicondutores , Raios Ultravioleta
17.
Langmuir ; 26(19): 15494-507, 2010 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-20828174

RESUMO

The dependence of morphology and polymer-chain orientation of regioregular poly(3-hexylthiophene) (rrP3HT) thin films on processing conditions have been widely studied. However, their possible variation across the film thickness direction remains largely unknown. We report here a marked difference in the optical dielectric (n,k) spectra between the top and bottom interfaces of spin-cast (sc) rrP3HT films deposited from chlorobenzene solutions. These spectra were obtained from reflection variable-angle spectroscopic ellipsometry using a self-consistent graded optical model with self-imposed Kramers-Krönig consistency. The top interface shows a red-shifted absorption that is characteristic of better order than at the bottom, across a wide range of film thicknesses. This disparity diminishes in drop-cast (dc) and multipass inkjet-printed (ijp) films, and disappears in amorphous films such as those of polystyrene and of a green-emitting phenyl-substituted poly(p-phenylenevinylene). The (n,k) spectra also reveal that crystallinity increases across sc < dc < ijp films. This is supported by cross section scanning electron microscopy of the cleaved edges and measurement of the microroughness of both the film interfaces. Furthermore, optical anisotropy decreases across sc > dc > ijp films. Finally, near-edge X-ray absorption fine structure spectroscopy also shows the frontier chains in ijp and dc films are more isotropically oriented than those in sc films. These results suggest that semicrystalline conjugated polymer films can be produced far from equilibrium. This explains the marked variation in their (opto)electronic properties between the top and bottom surfaces that has sometimes been found depending on the film deposition method. In particular, an unusually pronounced crystallization is induced by ijp. We label this marked ijp-induced crystallization the "ijp morphology", which appears to be general, as it is found also in single-inkjet-droplet films. It appears also to be responsible for the lower field-effect mobility measured for ijp films deposited on a variety of linear and circular electrode arrays. This however can fortuitously be reversed by annealing in solvent vapor. As all films were deposited in the low Peclet-number regime, we can rule out surface skin formation. We attribute the extensive crystallization to the non-uniform drying of picoliter droplets, further promoted by repeated film swelling-deswelling cycles in multipass-ijp films.

18.
Nanotechnology ; 21(19): 195305, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20400824

RESUMO

We report a growth phenomenon where uniform gallium arsenide (GaAs) islands were found to grow underneath an ordered array of SiO(2) nanodisks on a GaAs(100) substrate. Each island eventually grows into a pyramidal shape resulting in the toppling of the supported SiO(2) nanodisk. This phenomenon occurred consistently for each nanodisk across a large patterned area of approximately 50 x 50 microm(2) (with nanodisks of 210 nm diameter and 280 nm spacing). The growth mechanism is attributed to a combination of 'catalytic' growth and facet formation.

19.
J Nanosci Nanotechnol ; 6(6): 1815-8, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17025090

RESUMO

Conventional nanosphere lithography holds the drawbacks of lacking precise control over the shape and architecture of the resultant nanostructures. In this work, nanoimprinting lithography was used to construct various desired patterns on a polymer film coated on a silicon substrate. The patterns were then used as templates to direct the self-assembly of silica colloidal spheres, forming colloidal assemblies with well-controlled sizes, shapes, and structures. Subsequent nanosphere lithography using template-directed colloidal sphere assemblies resulted in complex nanostructures that can not be obtained using the conventional nanosphere lithography method.


Assuntos
Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Coloides , Microscopia Eletrônica de Varredura , Nanoestruturas/química , Tamanho da Partícula , Polimetil Metacrilato/química , Silício/química
20.
Langmuir ; 22(16): 7001-6, 2006 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16863251

RESUMO

With planar photolithography and self-assembly techniques, multilayer colloidal crystals with a woodpile structure were fabricated. They represent a new kind of photonic crystals, that is, three-dimensional (3D) photonic crystals with a dual periodicity; one comes from the face-centered cubic (fcc) structure within the colloidal crystal strips and the other one results from the periodic arrangement of the colloidal crystal strips.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA